Unraveling spatial cellular pattern by computational tissue shuffling.
Commun Biol
; 3(1): 605, 2020 10 23.
Article
em En
| MEDLINE
| ID: mdl-33097821
Cell biology relies largely on reproducible visual observations. Unlike cell culture, tissues are heterogeneous, making difficult the collection of biological replicates that would spotlight a precise location. In consequence, there is no standard approach for estimating the statistical significance of an observed pattern in a tissue sample. Here, we introduce SET (for Synthesis of Epithelial Tissue), a method that can accurately reconstruct the cell tessellation formed by an epithelium in a microscopy image as well as thousands of alternative synthetic tessellations made of the exact same cells. SET can build an accurate null distribution to statistically test if any local pattern is necessarily the result of a process, or if it could be explained by chance in the given context. We provide examples in various tissues where visible, and invisible, cell and subcellular patterns are unraveled in a statistically significant manner using a single image and without any parameter settings.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Processamento de Imagem Assistida por Computador
/
Fenômenos Fisiológicos Celulares
/
Células Epiteliais
/
Epitélio
/
Modelos Biológicos
Limite:
Animals
Idioma:
En
Revista:
Commun Biol
Ano de publicação:
2020
Tipo de documento:
Article