Your browser doesn't support javascript.
loading
Size-dependent dendritic maladaptations of hypoglossal motor neurons in SOD1G93A mice.
Fogarty, Matthew J; Mu, Erica W H; Lavidis, Nickolas A; Noakes, Peter G; Bellingham, Mark C.
Afiliação
  • Fogarty MJ; School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.
  • Mu EWH; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.
  • Lavidis NA; School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.
  • Noakes PG; School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.
  • Bellingham MC; School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.
Anat Rec (Hoboken) ; 304(7): 1562-1581, 2021 07.
Article em En | MEDLINE | ID: mdl-33099869
The total motor neuron (MN) somato-dendritic surface area is correlated with motor unit type. MNs with smaller surface areas innervate slow (S) and fast fatigue-resistant (FR) motor units, while MNs with larger surface areas innervate fast fatigue-intermediate (FInt) and fast fatigable (FF) motor units. Differences in MN surface area (equivalent to membrane capacitance) underpin the intrinsic excitability of MNs and are consistent with the orderly recruitment of motor units (S > FR > FInt > FF) via the Size Principle. In amyotrophic lateral sclerosis (ALS), large MNs controlling FInt and FF motor units exhibit earlier denervation and death, compared to smaller and more resilient MNs of type S and FR motor units that are spared until late in ALS. Abnormal dendritic morphologies in MNs precede neuronal death in human ALS and in rodent models. We employed Golgi-Cox methods to investigate somal size-dependent changes in the dendritic morphology of hypoglossal MNs in wildtype and SOD1G93A mice (a model of ALS), at postnatal (P) day ~30 (pre-symptomatic), ~P60 (onset), and ~P120 (mid-disease) stages. In wildtype hypoglossal MNs, increased MN somal size correlated with increased dendritic length and spines in a linear fashion. By contrast, in SOD1G93A mice, significant deviations from this linear correlation were restricted to the larger vulnerable MNs at pre-symptomatic (maladaptive) and mid-disease (degenerative) stages. These findings are consistent with excitability changes observed in ALS patients and in rodent models. Our results suggest that intrinsic or synaptic increases in MN excitability are likely to contribute to ALS pathogenesis, not compensate for it.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Dendritos / Esclerose Lateral Amiotrófica / Nervo Hipoglosso / Neurônios Motores Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Anat Rec (Hoboken) Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Dendritos / Esclerose Lateral Amiotrófica / Nervo Hipoglosso / Neurônios Motores Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Anat Rec (Hoboken) Ano de publicação: 2021 Tipo de documento: Article