Your browser doesn't support javascript.
loading
GmNFYA13 Improves Salt and Drought Tolerance in Transgenic Soybean Plants.
Ma, Xiao-Jun; Fu, Jin-Dong; Tang, Yi-Miao; Yu, Tai-Fei; Yin, Zhen-Gong; Chen, Jun; Zhou, Yong-Bin; Chen, Ming; Xu, Zhao-Shi; Ma, You-Zhi.
Afiliação
  • Ma XJ; Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China.
  • Fu JD; Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China.
  • Tang YM; Beijing Engineering Research Center for Hybrid Wheat, The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
  • Yu TF; Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China.
  • Yin ZG; Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Heilongjiang, China.
  • Chen J; Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China.
  • Zhou YB; Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China.
  • Chen M; Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China.
  • Xu ZS; Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China.
  • Ma YZ; Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China.
Front Plant Sci ; 11: 587244, 2020.
Article em En | MEDLINE | ID: mdl-33193539
NF-YA transcription factors function in modulating tolerance to abiotic stresses that are serious threats to crop yields. In this study, GmNFYA13, an NF-YA gene in soybean, was strongly induced by salt, drought, ABA, and H2O2, and suppressed by tungstate, an ABA synthesis inhibitor. The GmNFYA13 transcripts were detected in different tissues in seedling and flowering stages, and the expression levels in roots were highest. GmNFYA13 is a nuclear localization protein with self-activating activity. Transgenic Arabidopsis plants overexpressing GmNFYA13 with higher transcript levels of stress-related genes showed ABA hypersensitivity and enhanced tolerance to salt and drought stresses compared with WT plants. Moreover, overexpression of GmNFYA13 resulted in higher salt and drought tolerance in OE soybean plants, while suppressing it produced the opposite results. In addition, GmNFYA13 could bind to the promoters of GmSALT3, GmMYB84, GmNCED3, and GmRbohB to regulate their expression abundance in vivo. The data in this study suggested that GmNFYA13 enhanced salt and drought tolerance in soybean plants.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Plant Sci Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Plant Sci Ano de publicação: 2020 Tipo de documento: Article