Your browser doesn't support javascript.
loading
Proton transfer vs. oligophosphine formation by P-C/P-H σ-bond metathesis: decoding the competing Brønsted and Lewis type reactivities of imidazolio-phosphines.
Cicac-Hudi, Mario; Feil, Christoph M; Birchall, Nicholas; Nieger, Martin; Gudat, Dietrich.
Afiliação
  • Cicac-Hudi M; Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany. gudat@iac.uni-stuttgart.de.
Dalton Trans ; 49(47): 17401-17413, 2020 Dec 21.
Article em En | MEDLINE | ID: mdl-33216079
ABSTRACT
Studies of the protonation and alkylation of imidazolio-phosphides and deprotonation of imidazolio-phosphines reveal a complex behaviour that can be traced back to an interplay of Brønsted-type proton transfers and Lewis-type P-P bond formation reactions. As a consequence, the expected (de)protonation and (de)alkylation processes compete with reactions producing cyclic or linear oligophosphines. A careful adjustment of the conditions allows us to selectively address each reaction channel and devise specific synthesis methods for primary, secondary and tertiary imidazolio-phosphines, imidazolio-alkylphosphides, and cyclic oligophosphines, respectively. Mechanistic studies reveal that oligophosphines assemble in sequential P-P bond formation steps involving the condensation of cationic imidazolio-phosphines viaσ-bond metathesis and concomitant elimination of an imidazolium ion. Imidazolio-phosphides catalyse these transformations. Computational model studies suggest that the metathesis proceeds in two stages via an initial nucleophilic substitution under expulsion of a carbene, and a subsequent proton transfer step that generates an imidazolium cation and provides the driving force for the whole transformation. As energy barriers are predicted to be low or even absent, different elementary steps are presumed to form a network of mutually coupled equilibrium processes. Cyclic oligophosphines or their dismutation products are identified as the thermodynamically favoured final products in the reaction network.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Dalton Trans Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Dalton Trans Ano de publicação: 2020 Tipo de documento: Article