Your browser doesn't support javascript.
loading
Management options for mid-century maize (Zea mays L.) in Ethiopia.
Araya, A; Prasad, P V V; Gowda, P H; Zambreski, Z; Ciampitti, I A.
Afiliação
  • Araya A; Department of Agronomy, 2004 Throckmorton Plant Science Center, Kansas State University, Manhattan, KS, United States. Electronic address: aberhe@ksu.edu.
  • Prasad PVV; Department of Agronomy, 2004 Throckmorton Plant Science Center, Kansas State University, Manhattan, KS, United States; Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States. Electronic address: vara@ksu.edu.
  • Gowda PH; United States Department of Agriculture - Agricultural Research Service, Southeast Area, Stoneville, MS, United States.
  • Zambreski Z; Department of Agronomy, 2004 Throckmorton Plant Science Center, Kansas State University, Manhattan, KS, United States.
  • Ciampitti IA; Department of Agronomy, 2004 Throckmorton Plant Science Center, Kansas State University, Manhattan, KS, United States.
Sci Total Environ ; 758: 143635, 2021 Mar 01.
Article em En | MEDLINE | ID: mdl-33248791
This simulation study was carried out to assess the impact of climate change and adaptation strategies on maize production across 22 locations in Ethiopia using Decision Support System for Agrotechnology Transfer - Cropping System Model (DSSAT-CSM) CERES-Maize. Three maize varieties, i.e., [BH-660 (late maturing), BH-540 (medium maturing) and Melkasa-1 (short maturing)] along with three planting dates [early (25-Apr), normal (25-May) and late (25-Jun)], four N fertilizer rates (64, 96, 128 and 160 kg N/ha) and three water levels [rainfed (no irrigation), two irrigations (each 30 mm at time of flowering and 5 d after flowering with total = 60 mm) and five irrigations (each 30 mm at time of flowering to early grain-filing, which were applied every five days in total = 150 mm)] were evaluated as the adaptation strategy. The mid-century (2040-2069) temperatures and solar radiation were extracted from multiple model means across the Coordinated Regional Climate Downscaling Experiment (CORDEX) models under the highest Representative Concentration Pathway (RCP8.5). Maize productivity was evaluated assuming that maize was grown on shallow sandy loam soils. Yield of an early, medium and late maturing maize were changed by -13 to -8%, -10 to +4% and + 3 to +13%, respectively, relative to the baseline period (1980-2005). The days to maturity decreased by about 16%. Under rainfed condition, N application up to 64, 128 and 160 kg/ha significantly improved yield for early, medium and late maturing varieties, respectively. Relatively high yield and low inter-seasonal yield variability were simulated for BH-660 and Melkasa-1 when planted on 25-Apr and 25-May, respectively, for most locations. Application of two (60 mm) and five (150 mm) irrigation levels improved yield in drier locations. In conclusion, this study provides potential adaptation options under the future climate in maize producing regions of Ethiopia.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Zea mays / Agricultura Tipo de estudo: Prognostic_studies País/Região como assunto: Africa Idioma: En Revista: Sci Total Environ Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Zea mays / Agricultura Tipo de estudo: Prognostic_studies País/Região como assunto: Africa Idioma: En Revista: Sci Total Environ Ano de publicação: 2021 Tipo de documento: Article