Your browser doesn't support javascript.
loading
Information Geometric Approach on Most Informative Boolean Function Conjecture.
No, Albert.
Afiliação
  • No A; Department of Electronical and Electrical Engineering, Hongik University, Seoul 04066, Korea.
Entropy (Basel) ; 20(9)2018 Sep 10.
Article em En | MEDLINE | ID: mdl-33265777
Let X n be a memoryless uniform Bernoulli source and Y n be the output of it through a binary symmetric channel. Courtade and Kumar conjectured that the Boolean function f : { 0 , 1 } n → { 0 , 1 } that maximizes the mutual information I ( f ( X n ) ; Y n ) is a dictator function, i.e., f ( x n ) = x i for some i. We propose a clustering problem, which is equivalent to the above problem where we emphasize an information geometry aspect of the equivalent problem. Moreover, we define a normalized geometric mean of measures and interesting properties of it. We also show that the conjecture is true when the arithmetic and geometric mean coincide in a specific set of measures.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Entropy (Basel) Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Entropy (Basel) Ano de publicação: 2018 Tipo de documento: Article