Your browser doesn't support javascript.
loading
Predicting microbiomes through a deep latent space.
García-Jiménez, Beatriz; Muñoz, Jorge; Cabello, Sara; Medina, Joaquín; Wilkinson, Mark D.
Afiliação
  • García-Jiménez B; Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223-Pozuelo de Alarcón, Madrid, Spain.
  • Muñoz J; Serendeepia Research, 28905 Getafe (Madrid), Spain.
  • Cabello S; Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223-Pozuelo de Alarcón, Madrid, Spain.
  • Medina J; Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223-Pozuelo de Alarcón, Madrid, Spain.
  • Wilkinson MD; Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223-Pozuelo de Alarcón, Madrid, Spain.
Bioinformatics ; 37(10): 1444-1451, 2021 06 16.
Article em En | MEDLINE | ID: mdl-33289510
ABSTRACT
MOTIVATION Microbial communities influence their environment by modifying the availability of compounds, such as nutrients or chemical elicitors. Knowing the microbial composition of a site is therefore relevant to improve productivity or health. However, sequencing facilities are not always available, or may be prohibitively expensive in some cases. Thus, it would be desirable to computationally predict the microbial composition from more accessible, easily-measured features.

RESULTS:

Integrating deep learning techniques with microbiome data, we propose an artificial neural network architecture based on heterogeneous autoencoders to condense the long vector of microbial abundance values into a deep latent space representation. Then, we design a model to predict the deep latent space and, consequently, to predict the complete microbial composition using environmental features as input. The performance of our system is examined using the rhizosphere microbiome of Maize. We reconstruct the microbial composition (717 taxa) from the deep latent space (10 values) with high fidelity (>0.9 Pearson correlation). We then successfully predict microbial composition from environmental variables, such as plant age, temperature or precipitation (0.73 Pearson correlation, 0.42 Bray-Curtis). We extend this to predict microbiome composition under hypothetical scenarios, such as future climate change conditions. Finally, via transfer learning, we predict microbial composition in a distinct scenario with only 100 sequences, and distinct environmental features. We propose that our deep latent space may assist microbiome-engineering strategies when technical or financial resources are limited, through predicting current or future microbiome compositions. AVAILABILITY AND IMPLEMENTATION Software, results and data are available at https//github.com/jorgemf/DeepLatentMicrobiome. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microbiota Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Bioinformatics Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microbiota Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Bioinformatics Ano de publicação: 2021 Tipo de documento: Article