Your browser doesn't support javascript.
loading
Tunable rainbow light trapping in ultrathin resonator arrays.
Dixon, Katelyn; Montazeri, Arthur O; Shayegannia, Moein; Barnard, Edward S; Cabrini, Stefano; Matsuura, Naomi; Holman, Hoi-Ying; Kherani, Nazir P.
Afiliação
  • Dixon K; Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada.
  • Montazeri AO; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA.
  • Shayegannia M; Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada.
  • Barnard ES; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA.
  • Cabrini S; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA.
  • Matsuura N; Department of Materials Science & Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada.
  • Holman HY; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA.
  • Kherani NP; Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada. nazir.kherani@utoronto.ca.
Light Sci Appl ; 9(1): 194, 2020 Nov 26.
Article em En | MEDLINE | ID: mdl-33298862
ABSTRACT
Rainbow light trapping in plasmonic devices allows for field enhancement of multiple wavelengths within a single device. However, many of these devices lack precise control over spatial and spectral enhancement profiles and cannot provide extremely high localised field strengths. Here we present a versatile, analytical design paradigm for rainbow trapping in nanogroove arrays by utilising both the groove-width and groove-length as tuning parameters. We couple this design technique with fabrication through multilayer thin-film deposition and focused ion beam milling, which enables the realisation of unprecedented feature sizes down to 5 nm and corresponding extreme normalised local field enhancements up to 103. We demonstrate rainbow trapping within the devices through hyperspectral microscopy and show agreement between the experimental results and simulation. The combination of expeditious design and precise fabrication underpins the implementation of these nanogroove arrays for manifold applications in sensing and nanoscale optics.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Light Sci Appl Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Light Sci Appl Ano de publicação: 2020 Tipo de documento: Article