Your browser doesn't support javascript.
loading
Superviscous properties of the in vivo brain at large scales.
Herthum, Helge; Dempsey, Sergio C H; Samani, Abbas; Schrank, Felix; Shahryari, Mehrgan; Warmuth, Carsten; Tzschätzsch, Heiko; Braun, Jürgen; Sack, Ingolf.
Afiliação
  • Herthum H; Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany. Electronic address: helge.herthum@charite.de.
  • Dempsey SCH; School of Biomedical Engineering, Western University, London, Ontario, Canada. Electronic address: sdempse2@uwo.ca.
  • Samani A; School of Biomedical Engineering, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada; Imaging Research, Robarts Research Institute,
  • Schrank F; Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
  • Shahryari M; Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
  • Warmuth C; Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
  • Tzschätzsch H; Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
  • Braun J; Institute for Medical Informatics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany. Electronic address: juergen.braun@charite.de.
  • Sack I; Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany. Electronic address: ingolf.sack@charite.de.
Acta Biomater ; 121: 393-404, 2021 02.
Article em En | MEDLINE | ID: mdl-33326885
There is growing awareness that brain mechanical properties are important for neural development and health. However, published values of brain stiffness differ by orders of magnitude between static measurements and in vivo magnetic resonance elastography (MRE), which covers a dynamic range over several frequency decades. We here show that there is no fundamental disparity between static mechanical tests and in vivo MRE when considering large-scale properties, which encompass the entire brain including fluid filled compartments. Using gradient echo real-time MRE, we investigated the viscoelastic dispersion of the human brain in, so far, unexplored dynamic ranges from intrinsic brain pulsations at 1 Hz to ultralow-frequency vibrations at 5, 6.25, 7.8 and 10 Hz to the normal frequency range of MRE of 40 Hz. Surprisingly, we observed variations in brain stiffness over more than two orders of magnitude, suggesting that the in vivo human brain is superviscous on large scales with very low shear modulus of 42±13 Pa and relatively high viscosity of 6.6±0.3 Pa∙s according to the two-parameter solid model. Our data shed light on the crucial role of fluid compartments including blood vessels and cerebrospinal fluid (CSF) for whole brain properties and provide, for the first time, an explanation for the variability of the mechanical brain responses to manual palpation, local indentation, and high-dynamic tissue stimulation as used in elastography.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas de Imagem por Elasticidade Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Acta Biomater Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas de Imagem por Elasticidade Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Acta Biomater Ano de publicação: 2021 Tipo de documento: Article