Your browser doesn't support javascript.
loading
Combining In Vivo Data with In Silico Predictions for Modeling Hepatic Steatosis by Using Stratified Bagging and Conformal Prediction.
Jain, Sankalp; Norinder, Ulf; Escher, Sylvia E; Zdrazil, Barbara.
Afiliação
  • Jain S; Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, 1090 Vienna, Austria.
  • Norinder U; Unit of Toxicology Sciences, Swetox, Karolinska Institutet, SE-15136 Södertälje, Sweden.
  • Escher SE; Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625 Hannover, Germany.
  • Zdrazil B; Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, 1090 Vienna, Austria.
Chem Res Toxicol ; 34(2): 656-668, 2021 02 15.
Article em En | MEDLINE | ID: mdl-33347274
Hepatic steatosis (fatty liver) is a severe liver disease induced by the excessive accumulation of fatty acids in hepatocytes. In this study, we developed reliable in silico models for predicting hepatic steatosis on the basis of an in vivo data set of 1041 compounds measured in rodent studies with repeated oral exposure. The imbalanced nature of the data set (1:8, with the "steatotic" compounds belonging to the minority class) required the use of meta-classifiers-bagging with stratified under-sampling and Mondrian conformal prediction-on top of the base classifier random forest. One major goal was the investigation of the influence of different descriptor combinations on model performance (tested by predicting an external validation set): physicochemical descriptors (RDKit), ToxPrint features, as well as predictions from in silico nuclear receptor and transporter models. All models based upon descriptor combinations including physicochemical features led to reasonable balanced accuracies (BAs between 0.65 and 0.69 for the respective models). Combining physicochemical features with transporter predictions and further with ToxPrint features gave the best performing model (BAs up to 0.7 and efficiencies of 0.82). Whereas both meta-classifiers proved useful for this highly imbalanced toxicity data set, the conformal prediction framework also guarantees the error level and thus might be favored for future studies in the field of predictive toxicology.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Simulação por Computador / Fígado Gorduroso / Aprendizado de Máquina / Hidrocarbonetos Acíclicos / Hidrocarbonetos Aromáticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Chem Res Toxicol Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Simulação por Computador / Fígado Gorduroso / Aprendizado de Máquina / Hidrocarbonetos Acíclicos / Hidrocarbonetos Aromáticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Chem Res Toxicol Ano de publicação: 2021 Tipo de documento: Article