Your browser doesn't support javascript.
loading
Finite Element Simulations of the ID Venous System to Treat Venous Compression Disorders: From Model Validation to Realistic Implant Prediction.
Zaccaria, Alissa; Migliavacca, Francesco; Contassot, David; Heim, Frederic; Chakfe, Nabil; Pennati, Giancarlo; Petrini, Lorenza.
Afiliação
  • Zaccaria A; LaBS, Department of Chemistry Materials and Chemical Engineering, Politecnico di Milano, Milan, Italy.
  • Migliavacca F; LaBS, Department of Chemistry Materials and Chemical Engineering, Politecnico di Milano, Milan, Italy.
  • Contassot D; ID NEST MEDICAL SAS, Strasbourg, France.
  • Heim F; Laboratoire de Physique et Mécanique Textiles (LPMT), Université de Haute-Alsace, Mulhouse, France.
  • Chakfe N; Groupe Européen De Recherche Sur Les Prothèses Appliquées À La Chirurgie Vasculaire (GEPROVAS), Strasbourg, France.
  • Pennati G; Groupe Européen De Recherche Sur Les Prothèses Appliquées À La Chirurgie Vasculaire (GEPROVAS), Strasbourg, France.
  • Petrini L; Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
Ann Biomed Eng ; 49(6): 1493-1506, 2021 Jun.
Article em En | MEDLINE | ID: mdl-33398616
ABSTRACT
The ID Venous System is an innovative device proposed by ID NEST MEDICAL to treat venous compression disorders that involve bifurcations, such as the May-Thurner syndrome. The system consists of two components, ID Cav and ID Branch, combined through a specific connection that prevents the migration acting locally on the pathological region, thereby preserving the surrounding healthy tissues. Preliminary trials are required to ensure the safety and efficacy of the device, including numerical simulations. In-silico models are intended to corroborate experimental data, providing additional local information not acquirable by other means. The present work outlines the finite element model implementation and illustrates a sequential validation process, involving seven tests of increasing complexity to assess the impact of each numerical uncertainty separately. Following the standard ASME V&V40, the computational results were compared with experimental data in terms of force-displacement curves and deformed configurations, testing the model reliability for the intended context of use (differences < 10%). The deployment in a realistic geometry confirmed the feasibility of the implant procedure, without risk of rupture or plasticity of the components, highlighting the potential of the present technology.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças Vasculares / Veias / Stents / Modelos Cardiovasculares Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Ann Biomed Eng Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças Vasculares / Veias / Stents / Modelos Cardiovasculares Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Ann Biomed Eng Ano de publicação: 2021 Tipo de documento: Article