Your browser doesn't support javascript.
loading
A novel concentration gradient microfluidic chip for high-throughput antibiotic susceptibility testing of bacteria.
Sun, Jiadi; Ren, Yijing; Ji, Jian; Guo, Yu; Sun, Xiulan.
Afiliação
  • Sun J; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu, China.
  • Ren Y; State Key Laboratory of Dairy Biotechnology,Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, Shanghai, China.
  • Ji J; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu, China.
  • Guo Y; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu, China.
  • Sun X; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu, China.
Anal Bioanal Chem ; 413(4): 1127-1136, 2021 Feb.
Article em En | MEDLINE | ID: mdl-33420534
Antibiotic resistance has become a serious threat to food safety and public health globally. Therefore, the development of a sensitive, quick, and simple method for antibiotic susceptibility testing is an urgent and crucial need. A novel concentration gradient microfluidic chip was designed in this work to generate antibiotic concentration gradient, culture bacteria, and produce fluorescence emission. An in-house-assembled fluorescence detection platform was constructed, and experiments were conducted to verify the linearity of the generated concentration gradient, explore the appropriate incubation time and flow rate for the microfluidic chip, and study the effect of long-term acid-based food processing on antibiotic susceptibility testing. Experimental results show that the concentration gradient generated by the microfluidic chip exhibited good linearity, stability, and controllability. The appropriate flow rate and incubation time for the microfluidic chip were 2 µL/min and 5 h, respectively. The use of this microfluidic chip for testing antibiotic resistance of Salmonella to ofloxacin and ampicillin generated results that were completely consistent with test results obtained using the gold-standard method. Furthermore, Salmonella showed greater sensitivity to antibiotics under strong acid conditions, confirming the potential influence of acid-based food processing on antibiotic susceptibility testing of real samples. The designed microfluidic chip provides a high-throughput, sensitive, and rapid antibiotic susceptibility testing method that combines the microfluidic chip and the fluorescence detection platform. The application of this method would facilitate determination of antibiotic-resistant bacterial strains for clinicians and researchers, and enable monitoring of changes in bacterial resistance during food processing.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 / 3_ND Base de dados: MEDLINE Assunto principal: Salmonella / Testes de Sensibilidade Microbiana / Técnicas Analíticas Microfluídicas / Ensaios de Triagem em Larga Escala / Antibacterianos Limite: Humans Idioma: En Revista: Anal Bioanal Chem Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 / 3_ND Base de dados: MEDLINE Assunto principal: Salmonella / Testes de Sensibilidade Microbiana / Técnicas Analíticas Microfluídicas / Ensaios de Triagem em Larga Escala / Antibacterianos Limite: Humans Idioma: En Revista: Anal Bioanal Chem Ano de publicação: 2021 Tipo de documento: Article