Your browser doesn't support javascript.
loading
Neurotropin exerts neuroprotective effects after spinal cord injury by inhibiting apoptosis and modulating cytokines.
Yao, Xue; Sun, Chao; Fan, Baoyou; Zhao, Chenxi; Zhang, Yan; Duan, Huiquan; Pang, Yilin; Shen, Wenyuan; Li, Bo; Wang, Xu; Liu, Chang; Zhou, Hengxing; Kong, Xiaohong; Feng, Shiqing.
Afiliação
  • Yao X; Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, ICMRS Collaborating Center for Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
  • Sun C; Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, ICMRS Collaborating Center for Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
  • Fan B; Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, ICMRS Collaborating Center for Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
  • Zhao C; Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, ICMRS Collaborating Center for Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
  • Zhang Y; Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, ICMRS Collaborating Center for Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
  • Duan H; Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, ICMRS Collaborating Center for Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
  • Pang Y; Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, ICMRS Collaborating Center for Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
  • Shen W; Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, ICMRS Collaborating Center for Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
  • Li B; Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, ICMRS Collaborating Center for Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
  • Wang X; Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, ICMRS Collaborating Center for Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
  • Liu C; School of Medicine, Nankai University, Tianjin, China.
  • Zhou H; Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, ICMRS Collaborating Center for Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
  • Kong X; School of Medicine, Nankai University, Tianjin, China.
  • Feng S; Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, ICMRS Collaborating Center for Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
J Orthop Translat ; 26: 74-83, 2021 Jan.
Article em En | MEDLINE | ID: mdl-33437626
ABSTRACT
BACKGROUND/

OBJECTIVE:

Spinal cord injury (SCI) severely and irreversibly damages the central nervous system. Neurotropin (NTP), a nonprotein extract obtained from inflamed rabbit skin inoculated with vaccinia virus, is a drug that has been used for more than sixty years to alleviate neuropathic pain. It also reportedly exerts a neuroprotective role in peripheral nerves and in response to various central nervous system diseases, such as brain injury and Alzheimer disease. However, whether NTP promotes SCI recovery remains unknown. This study evaluated NTP's effects after SCI and explored its underlying mechanisms in a rat contusion model of SCI.

METHOD:

NTP was intraperitoneally administered to adult female Wistar rats subjected to contusion-induced SCI. Functional recovery was evaluated with behavioural scores and electrophysiological examinations. Tissue recovery was assessed with magnetic resonance imaging as well as histological staining with haematoxylin and eosin and Luxol Fast Blue. Neuronal survival and gliosis were observed after NeuN and glial fibrillary acidic protein immunofluorescence. Levels of apoptosis were demonstrated with TdT-mediated dUTP nick-end labeling (TUNEL) staining, Caspase-3 and B-cell lymphoma-2 (Bcl-2) Western blot, and Annexin V/propidium iodide flow cytometry. A protein antibody chip analysis was performed to evaluate the expression levels of 67 rat cytokines.

RESULTS:

NTP treatment improved the hindlimb locomotor recovery of the injured animals as well as their electrophysiological outcomes after SCI. A dosage of 50 NTP units/kg was found to optimize the efficacy of NTP. Magnetic resonance imaging revealed that lesion sizes decreased after NTP treatment. The haematoxylin and eosin and Luxol Fast Blue staining showed significant increases in the amount of spared tissue. The NeuN and glial fibrillary acidic protein immunofluorescence revealed that NTP treatment increased neuronal survival and reduced gliosis in tissue samples obtained from the lesion's epicentre. That NTP inhibited apoptosis was confirmed by the decreased number of TUNEL-positive cells, level of Caspase-3 expression, and number of Annexin V/propidium iodide-positive cells, as well as the increased level of Bcl-2 expression. The protein array analysis identified 28 differentially expressed proteins in the NTP group, and the gene ontology (GO) analysis showed that the enriched differentially expressed proteins implicate janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathways. The expression levels of proinflammatory cytokines such as interleukin 6, thymus chemokine-1(TCK-1), and lipopolysaccharide-induced CXC chemokine (LIX) decreased after NTP treatment, whereas the levels of prorepair cytokine hepatocyte growth factor and adiponectin increased.

CONCLUSION:

Our research provides evidence that NTP can improve functional outcomes and alleviate secondary injury after SCI by inhibiting apoptosis and modulating cytokines. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE The multicomponent NTP might have broad target spectra in SCI pathophysiology and halt the secondary injury cascade. As a safe drug that features sixty years of clinical use as an analgesic, translating this demonstrated efficacy of NTP to addressing SCI in human patients may potentially be accelerated.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Orthop Translat Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Orthop Translat Ano de publicação: 2021 Tipo de documento: Article