Your browser doesn't support javascript.
loading
Biomimetic "Nanoplatelets" as a Targeted Drug Delivery Platform for Breast Cancer Theranostics.
Li, Lin; Fu, Jian; Wang, Xingyue; Chen, Qiaoqi; Zhang, Wei; Cao, Yang; Ran, Haitao.
Afiliação
  • Li L; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China.
  • Fu J; Vascular Surgery Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China.
  • Wang X; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China.
  • Chen Q; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China.
  • Zhang W; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China.
  • Cao Y; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China.
  • Ran H; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China.
ACS Appl Mater Interfaces ; 13(3): 3605-3621, 2021 Jan 27.
Article em En | MEDLINE | ID: mdl-33449625
ABSTRACT
Breast cancer is a major threat to health and lives of females. Biomimetic nanotechnology brought brighter hope for early diagnosis and treatment of breast cancer. Here, we proposed a platelet (PLT) membrane-derived strategy for enhanced photoacoustic (PA)/ultrasonic (US)/fluorescence (FL) multimodal imaging and augmented synergistic photothermal/chemotherapeutic efficacy in tumor cells. A PA imaging contrast and photothermal agent, nanocarbons (CNs), a chemotherapeutic and FL material, doxorubicin (DOX), and perfluoropentane (PFP) were coencapsulated into the poly(lactic-co-glycolic) acid (PLGA) skeletons. Then, the PLT membranes were coated onto the PLGA NPs, which were named as "nanoplatelets" (DOX-PFP-CNs@PLGA/PM NPs). The "nanoplatelets", which conserved the structural advantages and inherent properties of PLTs, could not only escape from phagocytosis of macrophages but also actively targeted tumor cells by the way of antigen-antibody interactions between P-selectin on the PM and CD44 receptors of the tumor cells. With CNs and DOX loaded in, these "nanoplatelets" could serve as an excellent contrast agent for PA/FL imaging. Under laser irradiation, the "nanoplatelets" could turn light energy into heat energy. The laser-triggered photothermal effect, on the one hand, could ablate the tumor cells immediately, and on the other hand, could initiate the optical droplet vaporization of PFP, which subsequently enhanced US imaging and promoted the discharge of encapsulated DOX from the "nanoplatelets" for remarkably strengthening photothermal therapeutic power in turn. In this work, as compared with the bare drug-loaded nanoparticles, the "nanoplatelets" exhibited much more accumulation in the tumor cells, demonstrating superior multimodal imaging capability and preferable synergistic therapeutic performance. In conclusion, the "nanoplatelets" could serve as contrast agents for US imaging and PA imaging to guide the therapy. What is more, the bioinspired PLT-derived, targeted, and nontoxic "nanoplatelets", which were exploited for multimodal PA/US/FL imaging-guided synergistic photothermal/chemo therapy, will be of great value to breast cancer theranostics in the days to come.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Sistemas de Liberação de Medicamentos / Nanoestruturas Tipo de estudo: Screening_studies Limite: Animals / Female / Humans Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Sistemas de Liberação de Medicamentos / Nanoestruturas Tipo de estudo: Screening_studies Limite: Animals / Female / Humans Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2021 Tipo de documento: Article