Your browser doesn't support javascript.
loading
Glucose-Sensitive Polyphosphoester Diblock Copolymer for an Insulin Delivery System.
Li, Hongping; He, Jinlin; Zhang, Mingzu; Liu, Jian; Ni, Peihong.
Afiliação
  • Li H; College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesi
  • He J; College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesi
  • Zhang M; College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesi
  • Liu J; Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China.
  • Ni P; College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesi
ACS Biomater Sci Eng ; 6(3): 1553-1564, 2020 03 09.
Article em En | MEDLINE | ID: mdl-33455388
In this study, we report a diblock copolymer based on a polyphosphate backbone and pendant phenylboronic acid with glucose sensitivity. The copolymer, abbreviated as (PBYP-g-MPBA)-b-PEEP, was prepared via a combination of ring-opening copolymerization, "click" chemistry, and amide reaction, in which the PBYP and PEEP blocks, respectively, represent two kinds of polyphosphoester structures and MPBA represents 3-mercaptopropionic acid modified with 3-aminophenylboronic acid. The amphiphilic copolymer (PBYP-g-MPBA)-b-PEEP could self-assemble into core-shell nanoparticles (NPs) in aqueous solutions. The average particle size and morphology of the NPs were measured by dynamic light scattering and transmission electron microscopy, respectively. The phenomenon that the NPs swelled at different glucose concentrations is due to the formation of boronate esters between the diol groups of glucose and boronic acid groups of phenylboronic acid. Fluorescein isothiocyanate (FITC)-insulin was loaded into the NPs and triggered to release in the presence of glucose. The more the glucose in the release media, the more the FITC-insulin released and the faster the release rate. Methyl thiazolyl tetrazolium assays and hemolysis tests proved that the (PBYP-g-MPBA)-b-PEEP copolymers had good biocompatibility. All of these results verify that the glucose-sensitive polyphosphoester diblock copolymer is highly promising for an insulin delivery system.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Glucose Tipo de estudo: Diagnostic_studies Idioma: En Revista: ACS Biomater Sci Eng Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Glucose Tipo de estudo: Diagnostic_studies Idioma: En Revista: ACS Biomater Sci Eng Ano de publicação: 2020 Tipo de documento: Article