Your browser doesn't support javascript.
loading
Testing automatic methods to predict free binding energy of host-guest complexes in SAMPL7 challenge.
Serillon, Dylan; Bo, Carles; Barril, Xavier.
Afiliação
  • Serillon D; Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, Strasbourg, France. dylan.serillon@gmail.com.
  • Bo C; Institut de Biomedicina de la Universitat de Barcelona (IBUB) and Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain. dylan.serillon@gmail.com.
  • Barril X; Institut Català d'Investigació Química (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans, 17, 43007, Tarragona, Spain.
J Comput Aided Mol Des ; 35(2): 209-222, 2021 02.
Article em En | MEDLINE | ID: mdl-33464434
The design of new host-guest complexes represents a fundamental challenge in supramolecular chemistry. At the same time, it opens new opportunities in material sciences or biotechnological applications. A computational tool capable of automatically predicting the binding free energy of any host-guest complex would be a great aid in the design of new host systems, or to identify new guest molecules for a given host. We aim to build such a platform and have used the SAMPL7 challenge to test several methods and design a specific computational pipeline. Predictions will be based on machine learning (when previous knowledge is available) or a physics-based method (otherwise). The formerly delivered predictions with an RMSE of 1.67 kcal/mol but will require further work to identify when a specific system is outside of the scope of the model. The latter is combines the semiempirical GFN2B functional, with docking, molecular mechanics, and molecular dynamics. Correct predictions (RMSE of 1.45 kcal/mol) are contingent on the identification of the correct binding mode, which can be very challenging for host-guest systems with a large number of degrees of freedom. Participation in the blind SAMPL7 challenge provided fundamental direction to the project. More advanced versions of the pipeline will be tested against future SAMPL challenges.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Comput Aided Mol Des Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Comput Aided Mol Des Ano de publicação: 2021 Tipo de documento: Article