Your browser doesn't support javascript.
loading
Tumor Microenvironment-Responsive Nanococktails for Synergistic Enhancement of Cancer Treatment via Cascade Reactions.
Chen, Qiubing; Ma, Ya; Bai, Peng; Li, Qian; Canup, Brandon S B; Long, Dingpei; Ke, Bowen; Dai, Fangyin; Xiao, Bo; Li, Changming.
Afiliação
  • Chen Q; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, P. R. China.
  • Ma Y; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, P. R. China.
  • Bai P; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, P. R. China.
  • Li Q; Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 37 Guoxuexiang, Chengdu, Sichuan 610041, P. R. China.
  • Canup BSB; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, P. R. China.
  • Long D; Center for Diagnostics and Therapeutics, Georgia State University, 100 Piedmont Avenue, Atlanta, Georgia 30303, United States.
  • Ke B; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, P. R. China.
  • Dai F; Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 37 Guoxuexiang, Chengdu, Sichuan 610041, P. R. China.
  • Xiao B; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, P. R. China.
  • Li C; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, P. R. China.
ACS Appl Mater Interfaces ; 13(4): 4861-4873, 2021 Feb 03.
Article em En | MEDLINE | ID: mdl-33471499
ABSTRACT
A combination treatment strategy that relies on the synergetic effects of different therapeutic approaches has been considered to be an effective method for cancer therapy. Herein, a chemotherapeutic drug (doxorubicin, Dox) and a manganese ion (Mn2+) were co-loaded into regenerated silk fibroin-based nanoparticles (NPs), followed by the surface conjugation of phycocyanin (PC) to construct tumor microenvironment-activated nanococktails. The resultant PC-Mn@Dox-NPs showed increased drug release rates by responding to various stimulating factors (acidic pH, hydrogen peroxide (H2O2), and glutathione), revealing that they could efficiently release the payloads (Dox and Mn2+) in tumor cells. The released Dox could not only inhibit the growth of tumor cells but also generated a large amount of H2O2. The elevated H2O2 was decomposed into the highly harmful hydroxyl radicals and oxygen through an Mn2+-mediated Fenton-like reaction. Furthermore, the generated oxygen participated in photodynamic therapy (PDT) and produced abundant singlet oxygen. Our investigations demonstrate that these PC-Mn@Dox-NPs exhibit multiple bioresponsibilities and favorable biosafety. By integrating Dox-induced chemotherapy, Mn2+-mediated chemodynamic therapy, and PC-based PDT via cascade reactions, PC-Mn@Dox-NPs achieved enhanced in vitro and in vivo anticancer efficacies compared to all the mono- or dual-therapeutic approaches. These findings reveal that PC-Mn@Dox-NPs can be exploited as a promising nanococktail for cascade reaction-mediated synergistic cancer treatment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ficocianina / Doxorrubicina / Fármacos Fotossensibilizantes / Manganês / Antibióticos Antineoplásicos / Neoplasias Limite: Animals / Humans Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ficocianina / Doxorrubicina / Fármacos Fotossensibilizantes / Manganês / Antibióticos Antineoplásicos / Neoplasias Limite: Animals / Humans Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2021 Tipo de documento: Article