Inhibition of DHFR targets the self-renewing potential of brain tumor initiating cells.
Cancer Lett
; 503: 129-137, 2021 04 10.
Article
em En
| MEDLINE
| ID: mdl-33545223
Brain tumors are a heterogeneous group of benign and malignant tumors arising from the brain parenchyma and its surrounding structures, with in general a poor clinical outcome due to high recurrence. One of the underlying causes for this somber prognostic is the presence of brain tumor initiating cells (BTIC) endowed with self-renewal potential, multi-lineage differentiation and resistance to treatment. One promising therapeutic avenue for brain tumors is targeting BTIC self-renewal potential and forcing their differentiation. A compelling candidate is one-carbon metabolism shown to play a key role in maintaining stem cell self-renewal in several lineages. Here, we focus on dihydrofolate reductase (DHFR), a key enzyme in one-carbon metabolism, and demonstrate this enzyme's overexpression in several human brain tumors and its expression in human BTIC. We show that DHFR inhibition, either by Methotrexate (MTX) or EphB activation with synthetic ligands, reduces the tumorigenic potential of 4 human BTIC lines, by reducing their self-renewal capacities both in vitro and in a cerebral organoid glioma (GLICO) model. Our data indicate that driving BTIC differentiation by inhibiting DHFR may provide a new therapeutic approach to treating highly refractory aggressive tumors.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Tetra-Hidrofolato Desidrogenase
/
Células-Tronco Neoplásicas
/
Neoplasias Encefálicas
/
Regulação para Cima
/
Metotrexato
/
Glioma
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Cancer Lett
Ano de publicação:
2021
Tipo de documento:
Article