Your browser doesn't support javascript.
loading
The Impact of an Open-Book Pelvic Ring Injury on Bone Strain: Validation of a Finite Element Model and Analysis Within the Gait Cycle.
Salo, Zoryana; Kreder, Hans; Whyne, Cari Marisa.
Afiliação
  • Salo Z; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M4N 3M5, Canada; Holland Bone and Joint Research Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
  • Kreder H; Department of Surgery, Division of Orthopaedics, University of Toronto, Toronto, ON M4N 3M5, Canada; Holland Bone and Joint Research Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
  • Whyne CM; University of Toronto, Institute of Biomaterials and Biomedical Engineering, Toronto, ON M4N 3M5, CanadaHolland Bone and Joint Research Program, Sunnybrook Research Institute, 2075 Bayview Avenue, S6 20, Toronto, ON M4N 3M5, Canada.
J Biomech Eng ; 143(7)2021 07 01.
Article em En | MEDLINE | ID: mdl-33704380
The threshold for surgical stabilization for an open-book pelvic fracture is not well defined. The purpose of this research was to validate the biomechanical behavior of a specimen-specific pelvic finite element (FE) model with an open-book fracture with the biomechanical behavior of a cadaveric pelvis in double leg stance configuration under physiologic loading, and to utilize the validated model to compare open book versus intact strain patterns during gait. A cadaveric pelvis was experimentally tested under compressive loading in double leg stance, intact, and with a simulated open-book fracture. An intact FE model of this specimen was reanalyzed with an equivalent simulated open-book fracture. Comparison of the FE generated and experimentally measured strains yielded an R2 value of 0.92 for the open-book fracture configuration. Strain patterns in the intact and fractured models were compared throughout the gait cycle. In double leg stance and heel-strike/heel-off models, tensile strains decreased, especially in the pubic ramus contralateral to the injury, and compressive strains increased in the sacroiliac region of the injured side. In the midstance/midswing gait configuration, higher tensile and compressive FE strains were observed on the midstance side of the fractured versus intact model and decreased along the superior and inferior pubic rami and ischium, with midswing side strains reduced almost to zero in the fractured model. Identified in silico patterns align with clinical understanding of open-book fracture pathology suggesting future potential of FE models to quantify instability and optimize fixation strategies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise de Elementos Finitos Idioma: En Revista: J Biomech Eng Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise de Elementos Finitos Idioma: En Revista: J Biomech Eng Ano de publicação: 2021 Tipo de documento: Article