Quantitatively Switchable pH-Sensitive Photoluminescence of Carbon Nanodots.
J Phys Chem Lett
; 12(11): 2727-2735, 2021 Mar 25.
Article
em En
| MEDLINE
| ID: mdl-33705142
pH sensing plays a key role in the life sciences as well as the environmental, industrial, and agricultural fields. Carbon nanodots (C-dots) with small size, low toxicity, and excellent stability hold great potential in pH sensing as nanoprobes due to their intrinsic pH-sensitive photoluminescence (PL). Nonetheless, the undesirable sensitivity and response range of C-dot PL toward pH cannot meet the requirements of practical applications, and the unclear pH-sensitive PL mechanism makes it difficult to control their pH sensitivity. Herein, the quantitative correlation of pH-sensitive PL with specific surface structures of C-dots is uncovered for the first time, to our best knowledge. The association of carboxylate and H+ increases the ratio of nonradiation to radiation decay of C-dots through excited-state proton transfer, resulting in the decrease of PL intensity. Meanwhile, the dissociation of α-H in ß-dicarbonyl forming enolate increases the extent of delocalization of the C-dots conjugated system, which induces the PL broadening to the red region and a decreasing intensity. Based on the understanding of the pH-sensitive PL mechanism, the pH-sensitive PL of C-dots can be switched by quantitative modulation of carboxyl and ß-dicarbonyl groups to achieve a desirable pH response range with high sensitivity. This work contributes to a better understanding of the pH-sensitive PL of C-dots and therefore presents an effective strategy for controllably tuning their pH sensitivity, facilitating the rational design of C-dot-based pH sensors.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
Idioma:
En
Revista:
J Phys Chem Lett
Ano de publicação:
2021
Tipo de documento:
Article