Your browser doesn't support javascript.
loading
Coexistence of Parallel and Rotary Stackings in the Lamellar Crystals of a Perylene Bisimide Dyad for Temperature-Sensitive Bicomponent Emission.
Chen, Jiehuan; Tang, Ningning; Zhou, Jiadong; Wang, Liangxuan; Jiang, Nianqiang; Zheng, Nan; Liu, Linlin; Xie, Zengqi.
Afiliação
  • Chen J; Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
  • Tang N; Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
  • Zhou J; Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
  • Wang L; Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
  • Jiang N; Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
  • Zheng N; Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
  • Liu L; Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
  • Xie Z; Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
J Phys Chem Lett ; 12(13): 3373-3378, 2021 Apr 08.
Article em En | MEDLINE | ID: mdl-33784108
ABSTRACT
Coexistence of rotationally π-π stacked columns and discrete slip-stacked dimers of perylene bisimide (PBI) chromophores is revealed by single crystal X-ray diffraction in the lamellar crystal of a head-to-tail linked PBI dyad. The rotary π-π stacked columnar moieties show H-type spectral character with relatively higher excitation energy, while the discrete slip-stacked π-π dimers have J-type spectral behavior with lower excitation energy. The lamellar crystals show relatively low photoluminescence efficiency of 12% at room temperature, while this dramatically increases to ∼90% at low temperature (80 K). Both of the rotary and slip-stacked moieties are emissive, and the nonradiative energy transfer processes between them are suppressed at low temperature, ensuring the highly efficient excimer-like long-lived fluorescence.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: J Phys Chem Lett Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: J Phys Chem Lett Ano de publicação: 2021 Tipo de documento: Article