Your browser doesn't support javascript.
loading
Multi-Drug Featurization and Deep Learning Improve Patient-Specific Predictions of Adverse Events.
Anastopoulos, Ioannis N; Herczeg, Chloe K; Davis, Kasey N; Dixit, Atray C.
Afiliação
  • Anastopoulos IN; Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
  • Herczeg CK; Coral Genomics, Inc., 953 Indiana St., San Francisco, CA 94107, USA.
  • Davis KN; Coral Genomics, Inc., 953 Indiana St., San Francisco, CA 94107, USA.
  • Dixit AC; Coral Genomics, Inc., 953 Indiana St., San Francisco, CA 94107, USA.
Article em En | MEDLINE | ID: mdl-33807714
While the clinical approval process is able to filter out medications whose utility does not offset their adverse drug reaction profile in humans, it is not well suited to characterizing lower frequency issues and idiosyncratic multi-drug interactions that can happen in real world diverse patient populations. With a growing abundance of real-world evidence databases containing hundreds of thousands of patient records, it is now feasible to build machine learning models that incorporate individual patient information to provide personalized adverse event predictions. In this study, we build models that integrate patient specific demographic, clinical, and genetic features (when available) with drug structure to predict adverse drug reactions. We develop an extensible graph convolutional approach to be able to integrate molecular effects from the variable number of medications a typical patient may be taking. Our model outperforms standard machine learning methods at the tasks of predicting hospitalization and death in the UK Biobank dataset yielding an R2 of 0.37 and an AUC of 0.90, respectively. We believe our model has potential for evaluating new therapeutic compounds for individualized toxicities in real world diverse populations. It can also be used to prioritize medications when there are multiple options being considered for treatment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Acesso_medicamentos_insumos_estrategicos Base de dados: MEDLINE Assunto principal: Preparações Farmacêuticas / Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos / Aprendizado Profundo Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Int J Environ Res Public Health Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Temas: Acesso_medicamentos_insumos_estrategicos Base de dados: MEDLINE Assunto principal: Preparações Farmacêuticas / Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos / Aprendizado Profundo Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Int J Environ Res Public Health Ano de publicação: 2021 Tipo de documento: Article