Your browser doesn't support javascript.
loading
Thermally activated delayed fluorescence: A critical assessment of environmental effects on the singlet-triplet energy gap.
Dhali, Rama; Phan Huu, D K Andrea; Terenziani, Francesca; Sissa, Cristina; Painelli, Anna.
Afiliação
  • Dhali R; Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy.
  • Phan Huu DKA; Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy.
  • Terenziani F; Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy.
  • Sissa C; Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy.
  • Painelli A; Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy.
J Chem Phys ; 154(13): 134112, 2021 Apr 07.
Article em En | MEDLINE | ID: mdl-33832272
ABSTRACT
The effective design of dyes optimized for thermally activated delayed fluorescence (TADF) requires the precise control of two tiny energies the singlet-triplet gap, which has to be maintained within thermal energy, and the strength of spin-orbit coupling. A subtle interplay among low-energy excited states having dominant charge-transfer and local character then governs TADF efficiency, making models for environmental effects both crucial and challenging. The main message of this paper is a warning to the community of chemists, physicists, and material scientists working in the field the adiabatic approximation implicitly imposed to the treatment of fast environmental degrees of freedom in quantum-classical and continuum solvation models leads to uncontrolled results. Several approximation schemes were proposed to mitigate the issue, but we underline that the adiabatic approximation to fast solvation is inadequate and cannot be improved; rather, it must be abandoned in favor of an antiadiabatic approach.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2021 Tipo de documento: Article