Your browser doesn't support javascript.
loading
LoDoPaB-CT, a benchmark dataset for low-dose computed tomography reconstruction.
Leuschner, Johannes; Schmidt, Maximilian; Baguer, Daniel Otero; Maass, Peter.
Afiliação
  • Leuschner J; Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 5, 28359, Bremen, Germany. jleuschn@uni-bremen.de.
  • Schmidt M; Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 5, 28359, Bremen, Germany. maximilian.schmidt@uni-bremen.de.
  • Baguer DO; Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 5, 28359, Bremen, Germany.
  • Maass P; Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 5, 28359, Bremen, Germany.
Sci Data ; 8(1): 109, 2021 04 16.
Article em En | MEDLINE | ID: mdl-33863917
Deep learning approaches for tomographic image reconstruction have become very effective and have been demonstrated to be competitive in the field. Comparing these approaches is a challenging task as they rely to a great extent on the data and setup used for training. With the Low-Dose Parallel Beam (LoDoPaB)-CT dataset, we provide a comprehensive, open-access database of computed tomography images and simulated low photon count measurements. It is suitable for training and comparing deep learning methods as well as classical reconstruction approaches. The dataset contains over 40000 scan slices from around 800 patients selected from the LIDC/IDRI database. The data selection and simulation setup are described in detail, and the generating script is publicly accessible. In addition, we provide a Python library for simplified access to the dataset and an online reconstruction challenge. Furthermore, the dataset can also be used for transfer learning as well as sparse and limited-angle reconstruction scenarios.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Tomografia Computadorizada por Raios X Limite: Humans Idioma: En Revista: Sci Data Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Tomografia Computadorizada por Raios X Limite: Humans Idioma: En Revista: Sci Data Ano de publicação: 2021 Tipo de documento: Article