Your browser doesn't support javascript.
loading
Control of Multigene Expression Stoichiometry in Mammalian Cells Using Synthetic Promoters.
Patel, Yash D; Brown, Adam J; Zhu, Jie; Rosignoli, Guglielmo; Gibson, Suzanne J; Hatton, Diane; James, David C.
Afiliação
  • Patel YD; Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
  • Brown AJ; Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
  • Zhu J; Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States.
  • Rosignoli G; Dynamic Omics, Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
  • Gibson SJ; Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
  • Hatton D; Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
  • James DC; Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
ACS Synth Biol ; 10(5): 1155-1165, 2021 05 21.
Article em En | MEDLINE | ID: mdl-33939428
To successfully engineer mammalian cells for a desired purpose, multiple recombinant genes are required to be coexpressed at a specific and optimal ratio. In this study, we hypothesized that synthetic promoters varying in transcriptional activity could be used to create single multigene expression vectors coexpressing recombinant genes at a predictable relative stoichiometry. A library of 27 multigene constructs was created comprising three discrete fluorescent reporter gene transcriptional units in fixed series, each under the control of either a relatively low, medium, or high transcriptional strength synthetic promoter in every possible combination. Expression of each reporter gene was determined by absolute quantitation qRT-PCR in CHO cells. The synthetic promoters did generally function as designed within a multigene vector context; however, significant divergences from predicted promoter-mediated transcriptional activity were observed. First, expression of all three genes within a multigene vector was repressed at varying levels relative to coexpression of identical reporter genes on separate single gene vectors at equivalent gene copies. Second, gene positional effects were evident across all constructs where expression of the reporter genes in positions 2 and 3 was generally reduced relative to position 1. Finally, after accounting for general repression, synthetic promoter transcriptional activity within a local multigene vector format deviated from that expected. Taken together, our data reveal that mammalian synthetic promoters can be employed in vectors to mediate expression of multiple genes at predictable relative stoichiometries. However, empirical validation of functional performance is a necessary prerequisite, as vector and promoter design features can significantly impact performance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Expressão Gênica / Ativação Transcricional / Família Multigênica / Regiões Promotoras Genéticas / Engenharia Celular Limite: Animals Idioma: En Revista: ACS Synth Biol Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Expressão Gênica / Ativação Transcricional / Família Multigênica / Regiões Promotoras Genéticas / Engenharia Celular Limite: Animals Idioma: En Revista: ACS Synth Biol Ano de publicação: 2021 Tipo de documento: Article