Your browser doesn't support javascript.
loading
Ultraviolet-B exposure and exogenous hydrogen peroxide application lead to cross-tolerance toward drought in Nicotiana tabacum L.
Sáenz-de la O, Diana; Morales, Luis O; Strid, Åke; Torres-Pacheco, Irineo; Guevara-González, Ramón G.
Afiliação
  • Sáenz-de la O D; Biosystems Engineering, School of Engineering, Autonomous University of Queretaro-Campus Amazcala, Querétaro, Mexico.
  • Morales LO; School of Science and Technology, Örebro University, Örebro, Sweden.
  • Strid Å; School of Science and Technology, Örebro University, Örebro, Sweden.
  • Torres-Pacheco I; Biosystems Engineering, School of Engineering, Autonomous University of Queretaro-Campus Amazcala, Querétaro, Mexico.
  • Guevara-González RG; Biosystems Engineering, School of Engineering, Autonomous University of Queretaro-Campus Amazcala, Querétaro, Mexico.
Physiol Plant ; 173(3): 666-679, 2021 Nov.
Article em En | MEDLINE | ID: mdl-33948972
ABSTRACT
Acclimation of plants to water deficit involves biochemical and physiological adjustments. Here, we studied how ultraviolet (UV)-B exposure and exogenously applied hydrogen peroxide (H2 O2 ) potentiates drought tolerance in tobacco (Nicotiana tabacum L. cv. xanthi nc). Separate and combined applications for 14 days of 1.75 kJ m-2  day-1 UV-B radiation and 0.2 mM H2 O2 were assessed. Both factors, individually and combined, resulted in inhibition of growth. Furthermore, the combined treatment led to the most compacted plants. UV-B- and UV-B + H2 O2 -treated plants increased total antioxidant capacity and foliar epidermal flavonol index. H2 O2 - and UV-B + H2 O2 -pre-treated plants showed cross-tolerance to a subsequent 7-day moderate drought treatment, which was assessed as the absence of negative impact on growth, leaf wilting, and leaf relative water content. Plant responses to the pre-treatment were notably different (1) H2 O2 increased the activity of catalase (EC 1.11.1.6), phenylalanine ammonia lyase (EC 4.3.1.5), and peroxidase activities (EC 1.11.1.7), and (2) the combined treatment induced epidermal flavonols which were key to drought tolerance. We report synergistic effects of UV-B and H2 O2 on transcription accumulation of UV RESISTANCE LOCUS 8, NAC DOMAIN PROTEIN 13 (NAC13), and BRI1-EMS-SUPPRESSOR 1 (BES1). Our data demonstrate a pre-treatment-dependent response to drought for NAC13, BES1, and CHALCONE SYNTHASE transcript accumulation. This study highlights the potential of combining UV-B and H2 O2 to improve drought tolerance which could become a useful tool to reduce water use.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nicotiana / Secas Idioma: En Revista: Physiol Plant Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nicotiana / Secas Idioma: En Revista: Physiol Plant Ano de publicação: 2021 Tipo de documento: Article