Your browser doesn't support javascript.
loading
MAP-Elites Enables Powerful Stepping Stones and Diversity for Modular Robotics.
Nordmoen, Jørgen; Veenstra, Frank; Ellefsen, Kai Olav; Glette, Kyrre.
Afiliação
  • Nordmoen J; Department of Informatics, University of Oslo, Oslo, Norway.
  • Veenstra F; Department of Informatics, University of Oslo, Oslo, Norway.
  • Ellefsen KO; Department of Informatics, University of Oslo, Oslo, Norway.
  • Glette K; Department of Informatics, University of Oslo, Oslo, Norway.
Front Robot AI ; 8: 639173, 2021.
Article em En | MEDLINE | ID: mdl-33996926
In modular robotics modules can be reconfigured to change the morphology of the robot, making it able to adapt to specific tasks. However, optimizing both the body and control of such robots is a difficult challenge due to the intricate relationship between fine-tuning control and morphological changes that can invalidate such optimizations. These challenges can trap many optimization algorithms in local optima, halting progress towards better solutions. To solve this challenge we compare three different Evolutionary Algorithms on their capacity to optimize high performing and diverse morphologies and controllers in modular robotics. We compare two objective-based search algorithms, with and without a diversity promoting objective, with a Quality Diversity algorithm-MAP-Elites. The results show that MAP-Elites is capable of evolving the highest performing solutions in addition to generating the largest morphological diversity. Further, MAP-Elites is superior at regaining performance when transferring the population to new and more difficult environments. By analyzing genealogical ancestry we show that MAP-Elites produces more diverse and higher performing stepping stones than the two other objective-based search algorithms. The experiments transitioning the populations to new environments show the utility of morphological diversity, while the analysis of stepping stones show a strong correlation between diversity of ancestry and maximum performance on the locomotion task. Together, these results demonstrate the suitability of MAP-elites for the challenging task of morphology-control search for modular robots, and shed light on the algorithm's capability of generating stepping stones for reaching high-performing solutions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Robot AI Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Robot AI Ano de publicação: 2021 Tipo de documento: Article