Your browser doesn't support javascript.
loading
Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover.
Martin, Thomas G; Myers, Valerie D; Dubey, Praveen; Dubey, Shubham; Perez, Edith; Moravec, Christine S; Willis, Monte S; Feldman, Arthur M; Kirk, Jonathan A.
Afiliação
  • Martin TG; Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA.
  • Myers VD; Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
  • Dubey P; Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
  • Dubey S; Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
  • Perez E; Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA.
  • Moravec CS; Department of Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
  • Willis MS; Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
  • Feldman AM; Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
  • Kirk JA; Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA. jkirk2@luc.edu.
Nat Commun ; 12(1): 2942, 2021 05 19.
Article em En | MEDLINE | ID: mdl-34011988
ABSTRACT
The association between reduced myofilament force-generating capacity (Fmax) and heart failure (HF) is clear, however the underlying molecular mechanisms are poorly understood. Here, we show impaired Fmax arises from reduced BAG3-mediated sarcomere turnover. Myofilament BAG3 expression decreases in human HF and positively correlates with Fmax. We confirm this relationship using BAG3 haploinsufficient mice, which display reduced Fmax and increased myofilament ubiquitination, suggesting impaired protein turnover. We show cardiac BAG3 operates via chaperone-assisted selective autophagy (CASA), conserved from skeletal muscle, and confirm sarcomeric CASA complex localization is BAG3/proteotoxic stress-dependent. Using mass spectrometry, we characterize the myofilament CASA interactome in the human heart and identify eight clients of BAG3-mediated turnover. To determine if increasing BAG3 expression in HF can restore sarcomere proteostasis/Fmax, HF mice were treated with rAAV9-BAG3. Gene therapy fully rescued Fmax and CASA protein turnover after four weeks. Our findings indicate BAG3-mediated sarcomere turnover is fundamental for myofilament functional maintenance.
Assuntos

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Miócitos Cardíacos / Proteínas Adaptadoras de Transdução de Sinal / Proteínas Reguladoras de Apoptose / Insuficiência Cardíaca Tipo de estudo: Prognostic_studies Limite: Adult / Aged / Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Nat Commun Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Miócitos Cardíacos / Proteínas Adaptadoras de Transdução de Sinal / Proteínas Reguladoras de Apoptose / Insuficiência Cardíaca Tipo de estudo: Prognostic_studies Limite: Adult / Aged / Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Nat Commun Ano de publicação: 2021 Tipo de documento: Article