Your browser doesn't support javascript.
loading
EpiCovDA: a mechanistic COVID-19 forecasting model with data assimilation.
Biegel, Hannah R; Lega, Joceline.
Afiliação
  • Biegel HR; Department of Mathematics, University of Arizona, 617 N. Santa Rita Avenue, Tucson, AZ 85721.
  • Lega J; Department of Mathematics, University of Arizona, 617 N. Santa Rita Avenue, Tucson, AZ 85721.
ArXiv ; 2021 May 12.
Article em En | MEDLINE | ID: mdl-34012991
We introduce a minimalist outbreak forecasting model that combines data-driven parameter estimation with variational data assimilation. By focusing on the fundamental components of nonlinear disease transmission and representing data in a domain where model stochasticity simplifies into a process with independent increments, we design an approach that only requires four core parameters to be estimated. We illustrate this novel methodology on COVID-19 forecasts. Results include case count and deaths predictions for the US and all of its 50 states, the District of Columbia, and Puerto Rico. The method is computationally efficient and is not disease- or location-specific. It may therefore be applied to other outbreaks or other countries, provided case counts and/or deaths data are available.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ArXiv Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ArXiv Ano de publicação: 2021 Tipo de documento: Article