Your browser doesn't support javascript.
loading
Rheology-Informed Neural Networks (RhINNs) for forward and inverse metamodelling of complex fluids.
Mahmoudabadbozchelou, Mohammadamin; Jamali, Safa.
Afiliação
  • Mahmoudabadbozchelou M; Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA.
  • Jamali S; Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA. s.jamali@northeastern.edu.
Sci Rep ; 11(1): 12015, 2021 06 08.
Article em En | MEDLINE | ID: mdl-34103602
ABSTRACT
Reliable and accurate prediction of complex fluids' response under flow is of great interest across many disciplines, from biological systems to virtually all soft materials. The challenge is to solve non-trivial time and rate dependent constitutive equations to describe these structured fluids under various flow protocols. We present Rheology-Informed Neural Networks (RhINNs) for solving systems of Ordinary Differential Equations (ODEs) adopted for complex fluids. The proposed RhINNs are employed to solve the constitutive models with multiple ODEs by benefiting from Automatic Differentiation in neural networks. In a direct solution, the RhINNs platform accurately predicts the fully resolved solution of constitutive equations for a Thixotropic-Elasto-Visco-Plastic (TEVP) complex fluid for a series of flow protocols. From a practical perspective, an exhaustive list of experiments are required to identify model parameters for a multi-variant constitutive TEVP model. RhINNs are found to learn these non-trivial model parameters for a complex material using a single flow protocol, enabling accurate modeling with limited number of experiments and at an unprecedented rate. We also show the RhINNs are not limited to a specific model and can be extended to include various models and recover complex manifestations of kinematic heterogeneities and transient shear banding of thixotropic fluids.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline / Prognostic_studies Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline / Prognostic_studies Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article