Your browser doesn't support javascript.
loading
Stepwise Fabrication of Co-Embedded Porous Multichannel Carbon Nanofibers for High-Efficiency Oxygen Reduction.
Tang, Zeming; Zhao, Yingxuan; Lai, Qingxue; Zhong, Jia; Liang, Yanyu.
Afiliação
  • Tang Z; Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.
  • Zhao Y; Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.
  • Lai Q; Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China. laiqingxue@126.com.
  • Zhong J; Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.
  • Liang Y; Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China. liangyy403@126.com.
Nanomicro Lett ; 11(1): 33, 2019 Apr 06.
Article em En | MEDLINE | ID: mdl-34137980
A novel nonprecious metal material consisting of Co-embedded porous interconnected multichannel carbon nanofibers (Co/IMCCNFs) was rationally designed for oxygen reduction reaction (ORR) electrocatalysis. In the synthesis, ZnCo2O4 was employed to form interconnected mesoporous channels and provide highly active Co3O4/Co core-shell nanoparticle-based sites for the ORR. The IMC structure with a large synergistic effect of the N and Co active sites provided fast ORR electrocatalysis kinetics. The Co/IMCCNFs exhibited a high half-wave potential of 0.82 V (vs. reversible hydrogen electrode) and excellent stability with a current retention up to 88% after 12,000 cycles in a current-time test, which is only 55% for 30 wt% Pt/C.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomicro Lett Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomicro Lett Ano de publicação: 2019 Tipo de documento: Article