Your browser doesn't support javascript.
loading
Hyperpolarized 129Xe magnetic resonance spectroscopy in a rat model of bronchopulmonary dysplasia.
Fliss, Jordan D; Zanette, Brandon; Friedlander, Yonni; Sadanand, Siddharth; Lindenmaier, Andras A; Stirrat, Elaine; Li, Daniel; Post, Martin; Jankov, Robert P; Santyr, Giles.
Afiliação
  • Fliss JD; Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
  • Zanette B; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
  • Friedlander Y; Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
  • Sadanand S; Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
  • Lindenmaier AA; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
  • Stirrat E; Department of Biomedical Physics, Ryerson University, Toronto, Ontario, Canada.
  • Li D; Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
  • Post M; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
  • Jankov RP; Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
  • Santyr G; Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
Am J Physiol Lung Cell Mol Physiol ; 321(3): L507-L517, 2021 09 01.
Article em En | MEDLINE | ID: mdl-34189953
ABSTRACT
Premature infants often require mechanical ventilation and oxygen therapy, which can result in bronchopulmonary dysplasia (BPD), characterized by developmental arrest and impaired lung function. Conventional clinical methods for assessing the prenatal lung are not adequate for the detection and assessment of long-term health risks in infants with BPD, highlighting the need for a noninvasive tool for the characterization of lung microstructure and function. Theoretical diffusion models, like the model of xenon exchange (MOXE), interrogate alveolar gas exchange by predicting the uptake of inert hyperpolarized (HP) 129Xe gas measured with HP 129Xe magnetic resonance spectroscopy (MRS). To investigate HP 129Xe MRS as a tool for noninvasive characterization of pulmonary microstructural and functional changes in vivo, HP 129Xe gas exchange data were acquired in an oxygen exposure rat model of BPD that recapitulates the fewer and larger distal airways and pulmonary vascular stunting characteristics of BPD. Gas exchange parameters from MOXE, including airspace mean chord length (Lm), apparent hematocrit in the pulmonary capillaries (HCT), and pulmonary capillary transit time (tx), were compared with airspace mean axis length and area density (MAL and ρA) and percentage area of tissue and air (PTA and PAA) from histology. Lm was significantly larger in the exposed rats (P = 0.003) and correlated with MAL, ρA, PTA, and PAA (0.59<|ρ|<0.66 and P < 0.05). Observed increase in HCT (P = 0.012) and changes in tx are also discussed. These findings support the use of HP 129Xe MRS for detecting fewer, enlarged distal airways in this rat model of BPD, and potentially in humans.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Displasia Broncopulmonar / Capilares / Espectroscopia de Ressonância Magnética / Troca Gasosa Pulmonar / Pulmão Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Male Idioma: En Revista: Am J Physiol Lung Cell Mol Physiol Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Displasia Broncopulmonar / Capilares / Espectroscopia de Ressonância Magnética / Troca Gasosa Pulmonar / Pulmão Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Male Idioma: En Revista: Am J Physiol Lung Cell Mol Physiol Ano de publicação: 2021 Tipo de documento: Article