Your browser doesn't support javascript.
loading
Dimethyl sulfoxide reduces the stability but enhances catalytic activity of the main SARS-CoV-2 protease 3CLpro.
Ferreira, Juliana C; Fadl, Samar; Ilter, Metehan; Pekel, Hanife; Rezgui, Rachid; Sensoy, Ozge; Rabeh, Wael M.
Afiliação
  • Ferreira JC; Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
  • Fadl S; Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
  • Ilter M; Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey.
  • Pekel H; Department of Pharmacy Services, Vocational School of Health Services, Istanbul Medipol University, Istanbul, Turkey.
  • Rezgui R; Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
  • Sensoy O; Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
  • Rabeh WM; Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
FASEB J ; 35(8): e21774, 2021 08.
Article em En | MEDLINE | ID: mdl-34324734
ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19), one of the most challenging global pandemics of the modern era. Potential treatment strategies against COVID-19 are yet to be devised. It is crucial that antivirals that interfere with the SARS-CoV-2 life cycle be identified and developed. 3-Chymotrypsin-like protease (3CLpro) is an attractive antiviral drug target against SARS-CoV-2, and coronaviruses in general, because of its role in the processing of viral polyproteins. Inhibitors of 3CLpro activity are screened in enzyme assays before further development of the most promising leads. Dimethyl sulfoxide (DMSO) is a common additive used in such assays and enhances the solubility of assay components. However, it may also potentially affect the stability and efficiency of 3CLpro but, to date, this effect had not been analyzed in detail. Here, we investigated the effect of DMSO on 3CLpro-catalyzed reaction. While DMSO (5%-20%) decreased the optimum temperature of catalysis and thermodynamic stability of 3CLpro, it only marginally affected the kinetic stability of the enzyme. Increasing the DMSO concentration up to 20% improved the catalytic efficiency and peptide-binding affinity of 3CLpro. At such high DMSO concentration, the solubility and stability of peptide substrate were improved because of reduced aggregation. In conclusion, we recommend 20% DMSO as the minimum concentration to be used in screens of 3CLpro inhibitors as lead compounds for the development of antiviral drugs against COVID-19.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 4_TD Base de dados: MEDLINE Assunto principal: Regulação Enzimológica da Expressão Gênica / Regulação Viral da Expressão Gênica / Dimetil Sulfóxido / Proteases 3C de Coronavírus / SARS-CoV-2 / COVID-19 Limite: Humans Idioma: En Revista: FASEB J Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 4_TD Base de dados: MEDLINE Assunto principal: Regulação Enzimológica da Expressão Gênica / Regulação Viral da Expressão Gênica / Dimetil Sulfóxido / Proteases 3C de Coronavírus / SARS-CoV-2 / COVID-19 Limite: Humans Idioma: En Revista: FASEB J Ano de publicação: 2021 Tipo de documento: Article