Your browser doesn't support javascript.
loading
Insights into the molecular mechanism of tetracycline transport in saturated porous media affected by low-molecular-weight organic acids: Role of the functional groups and molecular size.
Wei, Qiqi; Zhou, Kun; Chen, Jiuyan; Zhang, Qiang; Lu, Taotao; Farooq, Usman; Chen, Weifeng; Li, Deliang; Qi, Zhichong.
Afiliação
  • Wei Q; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
  • Zhou K; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
  • Chen J; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; Ministry of Educati
  • Zhang Q; Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
  • Lu T; Department of Hydrology, University of Bayreuth, Bayreuth D-95440, Germany.
  • Farooq U; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
  • Chen W; Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
  • Li D; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
  • Qi Z; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China. Electronic address:
Sci Total Environ ; 799: 149361, 2021 Dec 10.
Article em En | MEDLINE | ID: mdl-34358745
The transport of tetracycline possessed a great challenge in its environmental applications. This study looked at how various low-molecular-weight organic acids (LMWOAs) affect the transport of tetracycline in environments. To that end, four LMWOAs were employed in experiments; acetic acid, malonic acid, malic acid, and citric acid. It was observed that LMWOAs promoted the tetracycline passage in presence of various experimental environments. The LMWOAs steric hindrance and deposition competition facilitated tetracycline transport at pH 5.0. The other deposition mechanism for tetracycline was the electrostatic repulsion between tetracycline and sand enhanced by deprotonated LMWOAs at pH 7.0. Moreover, the enhanced effects of LMWOAs on tetracycline mobility were intensively dependent on LMWOA type with more functional groups (e.g. carboxyl and hydroxyl groups) and larger molecular size supported stronger deposition competition, steric hindrance as well as electrostatic repulsion. Additionally, cation-bridging played a vital role for the enhanced effects of LMWOAs on tetracycline transport with divalent cations (e.g., Ca2+ and Pb2+). Interestingly, tetracycline exhibited a higher mobility in the presence of Ca2+ relative to Pb2+ regardless of LMWOAs-free or LMWOAs-addition. This phenomenon was attributed to the fact that Pb2+ has a greater affinity with tetracycline and LMWOAs than Ca2+. Furthermore, under the shadow of numerous LMWOAs, the non-equilibrium two site transportation model was employed to investigate the movement of tetracycline in porous saturated media. The present study suggests that LMWOAs may be important considerations in assessing the antibiotic passage in soil as well as groundwater.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes do Solo Idioma: En Revista: Sci Total Environ Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes do Solo Idioma: En Revista: Sci Total Environ Ano de publicação: 2021 Tipo de documento: Article