Your browser doesn't support javascript.
loading
Low-dose rapamycin does not impair vascular integrity and tubular regeneration after kidney transplantation in rats.
Hoff, Uwe; Markmann, Denise; Nieminen-Kelhä, Melina; Budde, Klemens; Hegner, Björn.
Afiliação
  • Hoff U; Department of Nephrology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
  • Markmann D; Nieren- und Dialysezentrum Schöneberg-Tempelhof, Berlin, Germany.
  • Nieminen-Kelhä M; Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
  • Budde K; Department of Nephrology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
  • Hegner B; Department of Nephrology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany. bjoern.hegner@gmx.de.
Sci Rep ; 11(1): 16270, 2021 08 11.
Article em En | MEDLINE | ID: mdl-34381142
ABSTRACT
mTOR inhibitors offer advantages after kidney transplantation including antiviral and antitumor activity besides facilitating low calcineurin inhibitor exposure to reduce nephrotoxicity. Concerns about adverse effects due to antiproliferative and antiangiogenic properties have limited their clinical use particularly early after transplantation. Interference with vascular endothelial growth factor (VEGF)-A, important for physiologic functioning of renal endothelial cells and tubular epithelium, has been implicated in detrimental renal effects of mTOR inhibitors. Low doses of Rapamycin (loading dose 3 mg/kg bodyweight, daily doses 1.5 mg/kg bodyweight) were administered in an allogenic rat kidney transplantation model resulting in a mean through concentration of 4.30 ng/mL. Glomerular and peritubular capillaries, tubular cell proliferation, or functional recovery from preservation/reperfusion injury were not compromised in comparison to vehicle treated animals. VEGF-A, VEGF receptor 2, and the co-receptor Neuropilin-1 were upregulated by Rapamycin within 7 days. Rat proximal tubular cells (RPTC) responded in vitro to hypoxia with increased VEGF-A and VEGF-R1 expression that was not suppressed by Rapamycin at therapeutic concentrations. Rapamycin did not impair proliferation of RPTC under hypoxic conditions. Low-dose Rapamycin early posttransplant does not negatively influence the VEGF network crucial for recovery from preservation/reperfusion injury. Enhancement of VEGF signaling peritransplant holds potential to further improve outcomes.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regeneração / Transplante de Rim / Sirolimo / Resultados Negativos / Túbulos Renais Proximais Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regeneração / Transplante de Rim / Sirolimo / Resultados Negativos / Túbulos Renais Proximais Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article