Your browser doesn't support javascript.
loading
Overexpression of an aquaporin protein from Aspergillus glaucus confers salt tolerance in transgenic soybean.
Li, Feiwu; Ni, Hejia; Yan, Wei; Xie, Yanbo; Liu, Xiaodan; Tan, Xichang; Zhang, Ling; Zhang, Shi-Hong.
Afiliação
  • Li F; College of Plant Science, Jilin University, No. 5333, Xi'an Str., Lvyuan District, Changchun, 130062, Jilin, People's Republic of China.
  • Ni H; Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai Str., Jingyue District, Changchun, 130033, Jilin, People's Republic of China.
  • Yan W; College of Agriculture, Northeast Agricultural University, Harbin, 150036, People's Republic of China.
  • Xie Y; Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai Str., Jingyue District, Changchun, 130033, Jilin, People's Republic of China.
  • Liu X; Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai Str., Jingyue District, Changchun, 130033, Jilin, People's Republic of China.
  • Tan X; Institute of Bioengineering, Jilin Agriculture Science and Technology College, Jilin, 132101, Jilin, People's Republic of China.
  • Zhang L; Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai Str., Jingyue District, Changchun, 130033, Jilin, People's Republic of China.
  • Zhang SH; Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai Str., Jingyue District, Changchun, 130033, Jilin, People's Republic of China. zly_jaas@126.com.
Transgenic Res ; 30(6): 727-737, 2021 12.
Article em En | MEDLINE | ID: mdl-34460070
ABSTRACT
Salt stress is an important abiotic factor that causes severe losses in soybean yield and quality. Therefore, breeding salt-tolerant soybean germplasm resources via genetic engineering has gained importance. Aspergillus glaucus, a halophilic fungus that exhibits significant tolerance to salt, carries the gene AgGlpF. In this study, we used the soybean cotyledonary node transformation method to transfer the AgGlpF gene into the genome of the soybean variety Williams 82 to generate salt-tolerant transgenic soybean varieties. The results of PCR, Southern blot, ddPCR, and RT-PCR indicated that AgGlpF was successfully integrated into the soybean genome and stably expressed. When subjected to salt stress conditions via treatment with 250 mM NaCl for 3 d, the transgenic soybean plants showed significant tolerance compared with wild-type plants, which exhibited withering symptoms and leaf abscission after 9 d. The results of this study indicated that the transfer of AgGlpF into the genome of soybean plants produced transgenic soybean with significantly improved salt stress tolerance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aquaporinas / Tolerância ao Sal Idioma: En Revista: Transgenic Res Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aquaporinas / Tolerância ao Sal Idioma: En Revista: Transgenic Res Ano de publicação: 2021 Tipo de documento: Article