Your browser doesn't support javascript.
loading
Structures and Agonist Binding Sites of Bitter Taste Receptor TAS2R5 Complexed with Gi Protein and Validated against Experiment.
Yang, Moon Young; Kim, Soo-Kyung; Kim, Donghwa; Liggett, Stephen B; Goddard, William A.
Afiliação
  • Yang MY; Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States.
  • Kim SK; Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States.
  • Kim D; Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida 33602, United States.
  • Liggett SB; Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida 33602, United States.
  • Goddard WA; Departments of Medicine and Molecular Pharmacology and Physiology, Medical Engineering, and Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida 33602, United States.
J Phys Chem Lett ; 12(38): 9293-9300, 2021 Sep 30.
Article em En | MEDLINE | ID: mdl-34542294
ABSTRACT
Bitter taste receptors (TAS2Rs) function in taste perception, but are also expressed in many extraoral tissues, presenting attractive therapeutic targets. TAS2R5s expressed on human airway smooth muscle cells can induce bronchodilation for treating asthma and other obstructive diseases. But TAS2R5s display low agonist affinity and the lack of a 3D structure has hindered efforts to design more active ligands. We report the structure of the activated TAS2R5 coupled to the Gi protein and bound to each of 19 agonists, using computational approaches. These agonists bind to two polar residues in TM3 that are unique for TAS2R5 among 25 TAS2R subtypes. Our predicted results correlate well with experimental results of agonist-receptor signaling coefficients, providing validation of the predicted structure. These results provide highly specific data on how agonists activate TAS2R5, how modifications of ligand structure alter receptor activation, and a guide to structure-based drug design.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP / Receptores Acoplados a Proteínas G Limite: Humans Idioma: En Revista: J Phys Chem Lett Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP / Receptores Acoplados a Proteínas G Limite: Humans Idioma: En Revista: J Phys Chem Lett Ano de publicação: 2021 Tipo de documento: Article