Your browser doesn't support javascript.
loading
Gene-based mapping of trehalose biosynthetic pathway genes reveals association with source- and sink-related yield traits in a spring wheat panel.
Lyra, Danilo H; Griffiths, Cara A; Watson, Amy; Joynson, Ryan; Molero, Gemma; Igna, Alina-Andrada; Hassani-Pak, Keywan; Reynolds, Matthew P; Hall, Anthony; Paul, Matthew J.
Afiliação
  • Lyra DH; Computational & Analytical Sciences Rothamsted Research Harpenden UK.
  • Griffiths CA; Plant Sciences Rothamsted Research Harpenden UK.
  • Watson A; Plant Sciences Rothamsted Research Harpenden UK.
  • Joynson R; The Earlham Institute Norwich UK.
  • Molero G; Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT) Texcoco Mexico.
  • Igna AA; Plant Sciences Rothamsted Research Harpenden UK.
  • Hassani-Pak K; Computational & Analytical Sciences Rothamsted Research Harpenden UK.
  • Reynolds MP; Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT) Texcoco Mexico.
  • Hall A; The Earlham Institute Norwich UK.
  • Paul MJ; Plant Sciences Rothamsted Research Harpenden UK.
Food Energy Secur ; 10(3): e292, 2021 Aug.
Article em En | MEDLINE | ID: mdl-34594548
ABSTRACT
Trehalose 6-phosphate (T6P) signalling regulates carbon use and allocation and is a target to improve crop yields. However, the specific contributions of trehalose phosphate synthase (TPS) and trehalose phosphate phosphatase (TPP) genes to source- and sink-related traits remain largely unknown. We used enrichment capture sequencing on TPS and TPP genes to estimate and partition the genetic variation of yield-related traits in a spring wheat (Triticum aestivum) breeding panel specifically built to capture the diversity across the 75,000 CIMMYT wheat cultivar collection. Twelve phenotypes were correlated to variation in TPS and TPP genes including plant height and biomass (source), spikelets per spike, spike growth and grain filling traits (sink) which showed indications of both positive and negative gene selection. Individual genes explained proportions of heritability for biomass and grain-related traits. Three TPS1 homologues were particularly significant for trait variation. Epistatic interactions were found within and between the TPS and TPP gene families for both plant height and grain-related traits. Gene-based prediction improved predictive ability for grain weight when gene effects were combined with the whole-genome markers. Our study has generated a wealth of information on natural variation of TPS and TPP genes related to yield potential which confirms the role for T6P in resource allocation and in affecting traits such as grain number and size confirming other studies which now opens up the possibility of harnessing natural genetic variation more widely to better understand the contribution of native genes to yield traits for incorporation into breeding programmes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Revista: Food Energy Secur Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Revista: Food Energy Secur Ano de publicação: 2021 Tipo de documento: Article