Your browser doesn't support javascript.
loading
Activation of mTOR mediates hyperglycemia-induced renal glomerular endothelial hyperpermeability via the RhoA/ROCK/pMLC signaling pathway.
Chen, Xiaolin; Chen, Jianhui; Li, Xianfan; Yu, Zengpu.
Afiliação
  • Chen X; Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang, 337000, Jiangxi, China. cxl888hhh@163.com.
  • Chen J; Department of Clinical Laboratory, The Sixth Clinical College of Gannan Medical University, Pingxiang, Jiangxi, China. cxl888hhh@163.com.
  • Li X; Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang, 337000, Jiangxi, China.
  • Yu Z; Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang, 337000, Jiangxi, China.
Diabetol Metab Syndr ; 13(1): 105, 2021 Oct 09.
Article em En | MEDLINE | ID: mdl-34627341
ABSTRACT

OBJECTIVE:

Hyperglycemia is associated with albuminuria and renal glomerular endothelial dysfunction in patients with diabetic nephropathy. The mTOR and RhoA/ROCK signaling pathways are involved in glomerular filtration barrier (GFB) regulation, but their role in high glucose (HG)-induced GFB dysfunction in human renal glomerular endothelial cells (HRGECs) has not been investigated. This study aimed to investigate the mechanisms of HG-induced GFB dysfunction in vitro. MATERIALS AND

METHODS:

HRGECs were cultured in vitro and exposed to HG. The horseradish peroxidase-albumin leakage and transendothelial electrical resistance of the endothelial monolayer were measured after HG treatment with or without rapamycin preincubation. A fluorescence probe was used to study the distribution of F-actin reorganization. The phosphorylation levels of myosin light chain (MLC) and mTOR were measured via western blotting. RhoA activity was evaluated via GTPase activation assay. The effects of blocking mTOR or the RhoA/ROCK pathway on endothelial permeability and MLC phosphorylation under HG conditions were observed.

RESULTS:

HG exposure induced F-actin reorganization and increased MLC phosphorylation, leading to EC barrier disruption. This effect was attenuated by treatment with rapamycin or Y-27632. Phospho-MLC (pMLC) activation in HRGECs was mediated by RhoA/ROCK signaling. mTOR and RhoA/ROCK inhibition or knockdown attenuated pMLC activation, F-actin reorganization and barrier disruption that occurred in response to HG exposure.

CONCLUSIONS:

Our results revealed that HG stimulation upregulated RhoA expression and activity through an mTOR-dependent pathway, leading to MLC-mediated endothelial cell cytoskeleton rearrangement and glomerular endothelial barrier dysfunction.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Diabetol Metab Syndr Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Diabetol Metab Syndr Ano de publicação: 2021 Tipo de documento: Article