Your browser doesn't support javascript.
loading
Impact of the Nuclear Envelope on Malignant Transformation, Motility, and Survival of Lung Cancer Cells.
Stefanello, Sílvio Terra; Luchtefeld, Isabelle; Liashkovich, Ivan; Pethö, Zoltan; Azzam, Ihab; Bulk, Etmar; Rosso, Gonzalo; Döhlinger, Lilly; Hesse, Bettina; Oeckinghaus, Andrea; Shahin, Victor.
Afiliação
  • Stefanello ST; Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, Münster, 48149, Germany.
  • Luchtefeld I; Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, Münster, 48149, Germany.
  • Liashkovich I; Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, Münster, 48149, Germany.
  • Pethö Z; Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, Münster, 48149, Germany.
  • Azzam I; Institute of Immunology, University of Münster, Röntgen-Str. 21, Münster, 48149, Germany.
  • Bulk E; Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, Münster, 48149, Germany.
  • Rosso G; Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, Münster, 48149, Germany.
  • Döhlinger L; Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, Münster, 48149, Germany.
  • Hesse B; Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, Münster, 48149, Germany.
  • Oeckinghaus A; Institute of Molecular Tumor Biology, University of Münster, Robert-Koch-Str. 43, Münster, 48149, Germany.
  • Shahin V; Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, Münster, 48149, Germany.
Adv Sci (Weinh) ; 8(22): e2102757, 2021 11.
Article em En | MEDLINE | ID: mdl-34658143
ABSTRACT
Nuclear pore complexes (NPCs) selectively mediate all nucleocytoplasmic transport and engage in fundamental cell-physiological processes. It is hypothesized that NPCs are critical for malignant transformation and survival of lung cancer cells, and test the hypothesis in lowly and highly metastatic non-small human lung cancer cells (NSCLCs). It is shown that malignant transformation is paralleled by an increased NPCs density, and a balanced pathological weakening of the physiological stringency of the NPC barrier. Pharmacological interference using barrier-breaking compounds collapses the stringency. Concomitantly, it induces drastic overall structural changes of NSCLCs, terminating their migration. Moreover, the degree of malignancy is found to be paralleled by substantially decreased lamin A/C levels. The latter provides crucial structural and mechanical stability to the nucleus, and interacts with NPCs, cytoskeleton, and nucleoskeleton for cell maintenance, survival, and motility. The recent study reveals the physiological importance of the NPC barrier stringency for mechanical and structural resilience of normal cell nuclei. Hence, reduced lamin A/C levels in conjunction with controlled pathological weakening of the NPC barrier stringency may facilitate deformability of NSCLCs during the metastasis steps. Modulation of the NPC barrier presents a potential strategy for suppressing the malignant phenotype or enhancing the effectiveness of currently existing chemotherapeutics.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pulmonares / Membrana Nuclear Limite: Animals / Humans Idioma: En Revista: Adv Sci (Weinh) Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pulmonares / Membrana Nuclear Limite: Animals / Humans Idioma: En Revista: Adv Sci (Weinh) Ano de publicação: 2021 Tipo de documento: Article