Your browser doesn't support javascript.
loading
Porous 3D Scaffolds Enhance MSC Vitality and Reduce Osteoclast Activity.
Spreda, Miriam; Hauptmann, Nicole; Lehner, Veronika; Biehl, Christoph; Liefeith, Klaus; Lips, Katrin Susanne.
Afiliação
  • Spreda M; Experimental Trauma Surgery, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany.
  • Hauptmann N; Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, 37308 Heilbad Heiligenstadt, Germany.
  • Lehner V; Experimental Trauma Surgery, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany.
  • Biehl C; Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Strasse 7, 35392 Giessen, Germany.
  • Liefeith K; Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, 37308 Heilbad Heiligenstadt, Germany.
  • Lips KS; Experimental Trauma Surgery, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany.
Molecules ; 26(20)2021 Oct 16.
Article em En | MEDLINE | ID: mdl-34684837
In the context of an aging population, unhealthy Western lifestyle, and the lack of an optimal surgical treatment, deep osteochondral defects pose a great challenge for the public health system. Biodegradable, biomimetic scaffolds seem to be a promising solution. In this study we investigated the biocompatibility of porous poly-((D,L)-lactide-ε-caprolactone)dimethacrylate (LCM) scaffolds in contrast to compact LCM scaffolds and blank cell culture plastic. Thus, morphology, cytotoxicity and metabolic activity of human mesenchymal stromal cells (MSC) seeded directly on the materials were analyzed after three and six days of culturing. Further, osteoclastogenesis and osteoclastic activity were assessed using reverse-transcriptase real-time PCR of osteoclast-specific genes, EIA and morphologic aspects after four, eight, and twelve days. LCM scaffolds did not display cytotoxic effects on MSC. After three days, metabolic activity of MSC was enhanced on 3D porous scaffolds (PS) compared to 2D compact scaffolds (CS). Osteoclast activity seemed to be reduced at PS compared to cell culture plastic at all time points, while no differences in osteoclastogenesis were detectable between the materials. These results indicate a good cytocompatibility of LCM scaffolds. Interestingly, porous 3D structure induced higher metabolic activity of MSC as well as reduced osteoclast activity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoclastos / Alicerces Teciduais / Células-Tronco Mesenquimais Limite: Female / Humans / Male / Middle aged Idioma: En Revista: Molecules Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoclastos / Alicerces Teciduais / Células-Tronco Mesenquimais Limite: Female / Humans / Male / Middle aged Idioma: En Revista: Molecules Ano de publicação: 2021 Tipo de documento: Article