Your browser doesn't support javascript.
loading
Degradation and inactivation efficacy of ozone water for antineoplastic drugs in hospital settings.
Kato, Ginjiro; Mitome, Hidemichi; Shigematsu, Saki; Utsunomiya, Aya; Shimasaki, Miho; Sasaki, Yuta; Maki, Tsuneo; Yamamoto, Hiroshi; Tanabe, Tomotaka; Funahashi, Tatsuya; Hatae, Noriyuki; Hidaka, Noriaki; Tanaka, Mamoru; Akira, Kazuki.
Afiliação
  • Kato G; Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan.
  • Mitome H; Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan.
  • Shigematsu S; Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan.
  • Utsunomiya A; Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan.
  • Shimasaki M; Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan.
  • Sasaki Y; Division of Pharmacy, 68286National Hospital Organization Shikoku Cancer Center Japan.
  • Maki T; Division of Pharmacy, 68286National Hospital Organization Shikoku Cancer Center Japan.
  • Yamamoto H; Division of Pharmacy, 68286National Hospital Organization Shikoku Cancer Center Japan.
  • Tanabe T; Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan.
  • Funahashi T; Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan.
  • Hatae N; Faculty of Pharmaceutical Sciences, 68348Yokohama University of Pharmacy, Japan.
  • Hidaka N; Division of Pharmacy, 89456Ehime University Hospital, Japan.
  • Tanaka M; Division of Pharmacy, 89456Ehime University Hospital, Japan.
  • Akira K; Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, 12694Matsuyama University, Japan.
J Oncol Pharm Pract ; 28(8): 1781-1789, 2022 Dec.
Article em En | MEDLINE | ID: mdl-34709082
PURPOSE: Occupational exposure to antineoplastic drugs in hospital settings is recognized to be hazardous, and as such environmental decontamination including degradation and inactivation of such drugs is recommended. To data, although various agents such as oxidants have been reported to be useful for decontamination, simpler, safer, and more convenient methods are required. In this study, the degradation and inactivation efficacy of ozone water, which has newly been introduced for decontamination of antineoplastic drugs in spills, was investigated for formulations of gemcitabine, irinotecan, and paclitaxel. METHODS: Antineoplastic formulations (medicinal ingredient: ∼1.5 µmol) were mixed with 50 mL of ozone water (>4 mg/L). The reactions were monitored by high-performance liquid chromatography, and the degradation mixtures were analyzed by 1H nuclear magnetic resonance spectroscopy in order to obtain the structural information of the degradation products. The formulations of gemcitabine and irinotecan and those degradation mixtures were evaluated for their mutagenicity using the Ames test and cytotoxicity against human cancer cells. RESULTS: gemcitabine and irinotecan were found to be readily degraded by the ozone treatment, and their active sites were suggested to be degraded. In contrast, paclitaxel was hard to be decomposed, possibly owing to the consumption of ozone by the polyoxyethylene castor oil added as a pharmaceutical additive of the formulation. No significant mutagenic changes of Salmonella typhimurium strains used for the Ames test were observed for the samples within the concentration ranges examined. The ozone treatment showed obvious increases in cell viability for gemcitabine formulation, and mild increases for irinotecan formulation. CONCLUSIONS: Ozone water was shown to be effective as a decomposition agent for the antineoplastic drug formulations examined, although the efficacy depends on the chemical structures of the drugs and the pharmaceutical additives. It was also suggested that ozone treatment has a tendency to decrease the toxicity of the antineoplastic drug formulations. As such, further studies are required in order to clarify the effects and application limitations of ozone water.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 12_ODS3_hazardous_contamination Base de dados: MEDLINE Assunto principal: Ozônio / Antineoplásicos Limite: Humans Idioma: En Revista: J Oncol Pharm Pract Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 12_ODS3_hazardous_contamination Base de dados: MEDLINE Assunto principal: Ozônio / Antineoplásicos Limite: Humans Idioma: En Revista: J Oncol Pharm Pract Ano de publicação: 2022 Tipo de documento: Article