Your browser doesn't support javascript.
loading
1-Nitropyrene exposure impairs embryo implantation through disrupting endometrial receptivity genes expression and producing excessive ROS.
Liang, Yuxiang; Shuai, Qizhi; Wang, Ying; Jin, Shanshan; Feng, Zihan; Chen, Binghong; Liang, Ting; Liu, Zhizhen; Zhao, Hong; Chen, Zhaoyang; Wang, Chunfang; Xie, Jun.
Afiliação
  • Liang Y; Experimental Animal Center of Shanxi Medical University, Shanxi Key Laboratory of Human Disease and Animal Models, Taiyuan 030001, Shanxi, China; Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of M
  • Shuai Q; Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
  • Wang Y; Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
  • Jin S; Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
  • Feng Z; Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
  • Chen B; Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
  • Liang T; Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
  • Liu Z; Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
  • Zhao H; Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
  • Chen Z; Experimental Animal Center of Shanxi Medical University, Shanxi Key Laboratory of Human Disease and Animal Models, Taiyuan 030001, Shanxi, China.
  • Wang C; Experimental Animal Center of Shanxi Medical University, Shanxi Key Laboratory of Human Disease and Animal Models, Taiyuan 030001, Shanxi, China.
  • Xie J; Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China. Electronic address: junxie@sxmu.edu.cn.
Ecotoxicol Environ Saf ; 227: 112939, 2021 Dec 20.
Article em En | MEDLINE | ID: mdl-34717220
ABSTRACT
Haze problem is an important factor threatening human health. PM2.5 is the main culprit haze. 1-Nitropyrene (1-NP) is the main nitrated polycyclic aromatic hydrocarbon, the toxic component of PM2.5 particles. The effects of 1-NP on various organs and reproductive health have been extensively and deeply studied, but the effects of 1-NP on embryo implantation and endometrial receptivity remain to be determined. The purpose of this study was to investigate the adverse effects of 1-NP on mouse embryo implantation and human endometrial receptivity. In early pregnancy, CD1 mice were given 2 mg/kg 1-NP by oral gavage, which resulted in a decreased embryo implantation number on day 5, inhibited leukemic inhibitory factor (LIF)/STAT3 pathway, decreased expression of estrogen receptor and progesterone receptor, and disrupted regulation of uterine cell proliferation. In addition, in a human in vitro implantation model, 1-NP was found to significantly inhibit the adhesion rate between trophoblast spheroids and endometrial epithelial cells, possibly by inhibiting the expression of receptivity molecules in Ishikawa cells. Promoting reactive oxygen species (ROS) production may be an additional mechanism by which it inhibits trophoblast spheroid adhesion. In this study, we used an in vivo mouse pregnancy model and an in vitro human embryo implantation model to demonstrate that 1-NP can impair endometrial receptivity and compromise embryo implantation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Implantação do Embrião / Endométrio Tipo de estudo: Prognostic_studies Limite: Animals / Pregnancy Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Implantação do Embrião / Endométrio Tipo de estudo: Prognostic_studies Limite: Animals / Pregnancy Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2021 Tipo de documento: Article