Your browser doesn't support javascript.
loading
Evaluation of Coronary Plaques and Stents with Conventional and Photon-counting CT: Benefits of High-Resolution Photon-counting CT.
Rajagopal, Jayasai R; Farhadi, Faraz; Richards, Taylor; Nikpanah, Moozhan; Sahbaee, Pooyan; Shanbhag, Sujata M; Bandettini, W Patricia; Saboury, Babak; Malayeri, Ashkan A; Pritchard, William F; Jones, Elizabeth C; Samei, Ehsan; Chen, Marcus Y.
Afiliação
  • Rajagopal JR; Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, NC (J.R.R., T.R., E.S.); Department of Radiology and Imaging Sciences, Clinical Center (F.F., M.N., B.S., A.A.M., E.C.J.), Cardiovascular Branch, National H
  • Farhadi F; Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, NC (J.R.R., T.R., E.S.); Department of Radiology and Imaging Sciences, Clinical Center (F.F., M.N., B.S., A.A.M., E.C.J.), Cardiovascular Branch, National H
  • Richards T; Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, NC (J.R.R., T.R., E.S.); Department of Radiology and Imaging Sciences, Clinical Center (F.F., M.N., B.S., A.A.M., E.C.J.), Cardiovascular Branch, National H
  • Nikpanah M; Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, NC (J.R.R., T.R., E.S.); Department of Radiology and Imaging Sciences, Clinical Center (F.F., M.N., B.S., A.A.M., E.C.J.), Cardiovascular Branch, National H
  • Sahbaee P; Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, NC (J.R.R., T.R., E.S.); Department of Radiology and Imaging Sciences, Clinical Center (F.F., M.N., B.S., A.A.M., E.C.J.), Cardiovascular Branch, National H
  • Shanbhag SM; Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, NC (J.R.R., T.R., E.S.); Department of Radiology and Imaging Sciences, Clinical Center (F.F., M.N., B.S., A.A.M., E.C.J.), Cardiovascular Branch, National H
  • Bandettini WP; Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, NC (J.R.R., T.R., E.S.); Department of Radiology and Imaging Sciences, Clinical Center (F.F., M.N., B.S., A.A.M., E.C.J.), Cardiovascular Branch, National H
  • Saboury B; Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, NC (J.R.R., T.R., E.S.); Department of Radiology and Imaging Sciences, Clinical Center (F.F., M.N., B.S., A.A.M., E.C.J.), Cardiovascular Branch, National H
  • Malayeri AA; Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, NC (J.R.R., T.R., E.S.); Department of Radiology and Imaging Sciences, Clinical Center (F.F., M.N., B.S., A.A.M., E.C.J.), Cardiovascular Branch, National H
  • Pritchard WF; Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, NC (J.R.R., T.R., E.S.); Department of Radiology and Imaging Sciences, Clinical Center (F.F., M.N., B.S., A.A.M., E.C.J.), Cardiovascular Branch, National H
  • Jones EC; Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, NC (J.R.R., T.R., E.S.); Department of Radiology and Imaging Sciences, Clinical Center (F.F., M.N., B.S., A.A.M., E.C.J.), Cardiovascular Branch, National H
  • Samei E; Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, NC (J.R.R., T.R., E.S.); Department of Radiology and Imaging Sciences, Clinical Center (F.F., M.N., B.S., A.A.M., E.C.J.), Cardiovascular Branch, National H
  • Chen MY; Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, NC (J.R.R., T.R., E.S.); Department of Radiology and Imaging Sciences, Clinical Center (F.F., M.N., B.S., A.A.M., E.C.J.), Cardiovascular Branch, National H
Radiol Cardiothorac Imaging ; 3(5): e210102, 2021 Oct.
Article em En | MEDLINE | ID: mdl-34778782
PURPOSE: To compare the performance of energy-integrating detector (EID) CT, photon-counting detector CT (PCCT), and high-resolution PCCT (HR-PCCT) for the visualization of coronary plaques and reduction of stent artifacts in a phantom model. MATERIALS AND METHODS: An investigational scanner with EID and PCCT subsystems was used to image a coronary artery phantom containing cylindrical probes simulating different plaque compositions. The phantom was imaged with and without coronary stents using both subsystems. Images were reconstructed with a clinical cardiac kernel and an additional HR-PCCT kernel. Regions of interest were drawn around probes and evaluated for in-plane diameter and a qualitative comparison by expert readers. A linear mixed-effects model was used to compare the diameter results, and a Shrout-Fleiss intraclass correlation coefficient was used to assess consistency in the reader study. RESULTS: Comparing in-plane diameter to the physical dimension for nonstented and stented phantoms, measurements of the HR-PCCT images were more accurate (nonstented: 4.4% ± 1.1 [standard deviation], stented: -9.4% ± 4.6) than EID (nonstented: 15.5% ± 4.0, stented: -19.5% ± 5.8) and PCCT (nonstented: 19.4% ± 2.5, stented: -18.3% ± 4.4). Our analysis of variance found diameter measurements to be different across image groups for both nonstented and stented cases (P < .001). HR-PCCT showed less change on average in percent stenosis due to the addition of a stent (-5.5%) than either EID (+90.5%) or PCCT (+313%). For both nonstented and stented phantoms, observers rated the HR-PCCT images as having higher plaque conspicuity and as being the image type that was least impacted by stent artifacts, with a high level of agreement (interclass correlation coefficient = 0.85). CONCLUSION: Despite increased noise, HR-PCCT images were able to better visualize coronary plaques and reduce stent artifacts compared with EID or PCCT reconstructions.Keywords: CT-Spectral Imaging (Dual Energy), Phantom Studies, Cardiac, Physics, Technology Assessment© RSNA, 2021.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Health_technology_assessment / Qualitative_research Idioma: En Revista: Radiol Cardiothorac Imaging Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Health_technology_assessment / Qualitative_research Idioma: En Revista: Radiol Cardiothorac Imaging Ano de publicação: 2021 Tipo de documento: Article