Your browser doesn't support javascript.
loading
KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image and Volumetric Segmentation.
IEEE Trans Med Imaging ; 41(4): 965-976, 2022 04.
Article em En | MEDLINE | ID: mdl-34813472
ABSTRACT
Most methods for medical image segmentation use U-Net or its variants as they have been successful in most of the applications. After a detailed analysis of these "traditional" encoder-decoder based approaches, we observed that they perform poorly in detecting smaller structures and are unable to segment boundary regions precisely. This issue can be attributed to the increase in receptive field size as we go deeper into the encoder. The extra focus on learning high level features causes U-Net based approaches to learn less information about low-level features which are crucial for detecting small structures. To overcome this issue, we propose using an overcomplete convolutional architecture where we project the input image into a higher dimension such that we constrain the receptive field from increasing in the deep layers of the network. We design a new architecture for im- age segmentation- KiU-Net which has two branches (1) an overcomplete convolutional network Kite-Net which learns to capture fine details and accurate edges of the input, and (2) U-Net which learns high level features. Furthermore, we also propose KiU-Net 3D which is a 3D convolutional architecture for volumetric segmentation. We perform a detailed study of KiU-Net by performing experiments on five different datasets covering various image modalities. We achieve a good performance with an additional benefit of fewer parameters and faster convergence. We also demonstrate that the extensions of KiU-Net based on residual blocks and dense blocks result in further performance improvements. Code https//github.com/jeya-maria-jose/KiU-Net-pytorch.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Redes Neurais de Computação Idioma: En Revista: IEEE Trans Med Imaging Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Redes Neurais de Computação Idioma: En Revista: IEEE Trans Med Imaging Ano de publicação: 2022 Tipo de documento: Article