Your browser doesn't support javascript.
loading
Parsed synthesis of pyocyanin via co-culture enables context-dependent intercellular redox communication.
Chun, Kayla; Stephens, Kristina; Wang, Sally; Tsao, Chen-Yu; Payne, Gregory F; Bentley, William E.
Afiliação
  • Chun K; Fischell Department of Bioengineering, University of Maryland, 5102 Clark Hall, College Park, MD, 20742, USA.
  • Stephens K; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, USA.
  • Wang S; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA.
  • Tsao CY; Fischell Department of Bioengineering, University of Maryland, 5102 Clark Hall, College Park, MD, 20742, USA.
  • Payne GF; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, USA.
  • Bentley WE; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA.
Microb Cell Fact ; 20(1): 215, 2021 Nov 24.
Article em En | MEDLINE | ID: mdl-34819093
BACKGROUND: Microbial co-cultures and consortia are of interest in cell-based molecular production and even as "smart" therapeutics in that one can take advantage of division of labor and specialization to expand both the range of available functions and mechanisms for control. The development of tools that enable coordination and modulation of consortia will be crucial for future application of multi-population cultures. In particular, these systems would benefit from an expanded toolset that enables orthogonal inter-strain communication. RESULTS: We created a co-culture for the synthesis of a redox-active phenazine signaling molecule, pyocyanin (PYO), by dividing its synthesis into the generation of its intermediate, phenazine carboxylic acid (PCA) from the first strain, followed by consumption of PCA and generation of PYO in a second strain. Interestingly, both PCA and PYO can be used to actuate gene expression in cells engineered with the soxRS oxidative stress regulon, although importantly this signaling activity was found to depend on growth media. That is, like other signaling motifs in bacterial systems, the signaling activity is context dependent. We then used this co-culture's phenazine signals in a tri-culture to modulate gene expression and production of three model products: quorum sensing molecule autoinducer-1 and two fluorescent marker proteins, eGFP and DsRed. We also showed how these redox-based signals could be intermingled with other quorum-sensing (QS) signals which are more commonly used in synthetic biology, to control complex behaviors. To provide control over product synthesis in the tri-cultures, we also showed how a QS-induced growth control module could guide metabolic flux in one population and at the same time guide overall tri-culture function. Specifically, we showed that phenazine signal recognition, enabled through the oxidative stress response regulon soxRS, was dependent on media composition such that signal propagation within our parsed synthetic system could guide different desired outcomes based on the prevailing environment. In doing so, we expanded the range of signaling molecules available for coordination and the modes by which they can be utilized to influence overall function of a multi-population culture. CONCLUSIONS: Our results show that redox-based signaling can be intermingled with other quorum sensing signaling in ways that enable user-defined control of microbial consortia yielding various outcomes defined by culture medium. Further, we demonstrated the utility of our previously designed growth control module in influencing signal propagation and metabolic activity is unimpeded by orthogonal redox-based signaling. By exploring novel multi-modal strategies for guiding communication and consortia outcome, the concepts introduced here may prove to be useful for coordination of multiple populations within complex microbial systems.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenazinas / Piocianina / Consórcios Microbianos / Biologia Sintética / Engenharia Metabólica Idioma: En Revista: Microb Cell Fact Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenazinas / Piocianina / Consórcios Microbianos / Biologia Sintética / Engenharia Metabólica Idioma: En Revista: Microb Cell Fact Ano de publicação: 2021 Tipo de documento: Article