Your browser doesn't support javascript.
loading
Insights into the multi-targeted effects of free nitrous acid on the microalgae Chlorella sorokiniana in wastewater.
Abbew, Abdul-Wahab; Qiu, Shuang; Amadu, Ayesha Algade; Qasim, Muhammed Zeeshan; Chen, Zhipeng; Wu, Zhengshuai; Wang, Lingfeng; Ge, Shijian.
Afiliação
  • Abbew AW; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Qiu S; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Amadu AA; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Qasim MZ; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Chen Z; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Wu Z; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Wang L; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
  • Ge S; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China. Electronic address: geshijian1221@njust.edu.cn.
Bioresour Technol ; 347: 126389, 2022 Mar.
Article em En | MEDLINE | ID: mdl-34822980
Microalgal-bacterial consortium process (MBCP) proposed as an alternative to the activated sludge process contains free nitrous acid (FNA). FNA antimicrobial influences on nitrifiers have been demonstrated. However, its influence on microalgae is largely unknown, limiting the system stability of MBCP. This study revealed the multi-targeted responses of a model wastewater microalgae, Chlorella sorokiniana, to FNA exposure through physiological and transcriptomic analyses. Results showed a concentration-dependent FNA-influence as both microalgal growth and photosynthesis (Fv/Fm, rETR, Y(II), NPQ) inversely correlated with FNA doses. Increased ROS, MDA content (5.0-fold), SOD (2.7-fold), and LDH (12.0-fold) activities in the treatments revealed FNA-induced oxidative pressure. Moreover, RNA-sequencing results revealed significantly downregulated genes related to photosynthesis, respiration, nitrogen metabolism, and tricarboxylic acid cycle. Comparatively, peroxisome, chlorophyll, and carotenoid genes were upregulated. These findings elucidate the inhibitory mechanisms of FNA on microalgae and contribute towards the prospective practical application of the MBCP system for sustainable wastewater treatment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Chlorella / Microalgas Tipo de estudo: Observational_studies / Prognostic_studies Idioma: En Revista: Bioresour Technol Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Chlorella / Microalgas Tipo de estudo: Observational_studies / Prognostic_studies Idioma: En Revista: Bioresour Technol Ano de publicação: 2022 Tipo de documento: Article