Self-assembly patterns of non-metalloid silver thiolates: structural, HR-ESI-MS and stability studies.
Dalton Trans
; 51(2): 705-714, 2022 Jan 04.
Article
em En
| MEDLINE
| ID: mdl-34913941
Screening of AgNO3/AgStBu solutions in DMF, DMSO and NMP resulted in the isolation of three novel nanosized silver/thiolate complexes with a torus-like {Ag20(StBu)10} core. The structures of [NO3@Ag20(StBu)10(NO3)9(DMF)6] (1) and [NO3@Ag20(tBuS)10(NO3)8(NMP)8][NO3@Ag19(tBuS)10(NO3)8(NMP)6]2(NO3) (2) were studied by single crystal X-ray diffraction (SCXRD). The self-assembly process leading to 1 can be switched to a different outcome using Br-, resulting in [Br@Ag16(StBu)8(NO3)5(DMF)3](NO3)2 (3), which is the one of the few genuine host-guest complexes in the silver/thiolate systems. Solutions of the individual complexes in CH3CN were studied by HR-ESI-MS techniques, which revealed a dynamic behavior for each complex, driven by a redistribution of the {AgNO3} units. This dynamics results in the appearance of both cationic and anionic species, based on unchanged silver-thiolate cores. Daylight causes degradation of 3 with the formation of a composite material based on defective orthorhombic Ag2S with a porous morphology, as observed using the SEM technique. The electrocatalytic HER activity of such a material was studied.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Dalton Trans
Ano de publicação:
2022
Tipo de documento:
Article