Your browser doesn't support javascript.
loading
Interfacial Ammonia Selectivity, Atmospheric Passivation, and Molecular Identification in Graphene-Nanopored Activated Carbon Molecular-Sieve Gas Sensors.
Agbonlahor, Osazuwa G; Muruganathan, Manoharan; Ramaraj, Sankar G; Wang, Zhongwang; Hammam, Ahmed M M; Kareekunnan, Afsal; Maki, Hisashi; Hattori, Masashi; Shimomai, Kenichi; Mizuta, Hiroshi.
Afiliação
  • Agbonlahor OG; School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan.
  • Muruganathan M; School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan.
  • Ramaraj SG; School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan.
  • Wang Z; School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan.
  • Hammam AMM; School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan.
  • Kareekunnan A; Physics Department, Faculty of Science, Minia University, 11432 Main Road-Shalaby Land, Minia 61519, Egypt.
  • Maki H; School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan.
  • Hattori M; School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan.
  • Shimomai K; TAIYO YUDEN CO., LTD. R&D Center, 5607-2, Nakamuroda-machi, Takasaki-shi, Gunma 370-3347, Japan.
  • Mizuta H; TAIYO YUDEN CO., LTD. R&D Center, 5607-2, Nakamuroda-machi, Takasaki-shi, Gunma 370-3347, Japan.
ACS Appl Mater Interfaces ; 13(51): 61770-61779, 2021 Dec 29.
Article em En | MEDLINE | ID: mdl-34914376
ABSTRACT
Graphene's inherent nonselectivity and strong atmospheric doping render most graphene-based sensors unsuitable for atmospheric applications in environmental monitoring of pollutants and breath detection of biomarkers for noninvasive medical diagnosis. Hence, demonstrations of graphene's gas sensitivity are often in inert environments such as nitrogen, consequently of little practical relevance. Herein, target gas sensing at the graphene-activated carbon interface of a graphene-nanopored activated carbon molecular-sieve sensor obtained via the postlithographic pyrolysis of Novolac resin residues on graphene nanoribbons is shown to simultaneously induce ammonia selectivity and atmospheric passivation of graphene. Consequently, 500 parts per trillion (ppt) ammonia sensitivity in atmospheric air is achieved with a response time of ∼3 s. The similar graphene and a-C workfunctions ensure that the ambipolar and gas-adsorption-induced charge transfer characteristics of pristine graphene are retained. Harnessing the van der Waals bonding memory and electrically tunable charge-transfer characteristics of the adsorbed molecules on the graphene channel, a molecular identification technique (charge neutrality point disparity) is developed and demonstrated to be suitable even at parts per billion (ppb) gas concentrations. The selectivity and atmospheric passivation induced by the graphene-activated carbon interface enable atmospheric applications of graphene sensors in environmental monitoring and noninvasive medical diagnosis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2021 Tipo de documento: Article