Your browser doesn't support javascript.
loading
Combined antioxidants and anti-inflammatory therapies fail to attenuate the early and late phases of cyclodextrin-induced cochlear damage and hearing loss.
Manohar, Senthilvelan; Ding, Dalian; Jiang, Haiyan; Li, Li; Chen, Guang-Di; Kador, Peter; Salvi, Richard.
Afiliação
  • Manohar S; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA.
  • Ding D; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA.
  • Jiang H; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA.
  • Li L; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA.
  • Chen GD; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA.
  • Kador P; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA.
  • Salvi R; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA. Electronic address: salvi@buffalo.edu.
Hear Res ; 414: 108409, 2022 02.
Article em En | MEDLINE | ID: mdl-34953289
ABSTRACT
Niemann-Pick C1 (NPC1) is a fatal neurodegenerative disease caused by aberrant cholesterol metabolism. The progression of the disease can be slowed by removing excess cholesterol with high-doses of 2-hyroxypropyl-beta-cyclodextrin (HPßCD). Unfortunately, HPßCD causes hearing loss; the initial first phase involves a rapid destruction of outer hair cells (OHCs) while the second phase, occurring 4-6 weeks later, involves the destruction of inner hair cells (IHCs), pillar cells, collapse of the organ of Corti and spiral ganglion neuron degeneration. To determine whether the first and/or second phase of HPßCD-induced cochlear damage is linked, in part, to excess oxidative stress or neuroinflammation, rats were treated with a single-dose of 3000 mg/kg HPßCD alone or together with one of two combination therapies. Each combination therapy was administered from 2-days before to 6-weeks after the HPßCD treatment. Combination 1 consisted of minocycline, an antibiotic that suppresses neuroinflammation, and HK-2, a multifunctional redox modulator that suppresses oxidative stress. Combination 2 was comprised of minocycline plus N-acetyl cysteine (NAC), which upregulates glutathione, a potent antioxidant. To determine if either combination therapy could prevent HPßCD-induced hearing impairment and cochlear damage, distortion product otoacoustic emissions (DPOAE) were measured to assess OHC function and the cochlear compound action potential (CAP) was measured to assess the function of IHCs and auditory nerve fibers. Cochleograms were prepared to quantify the amount of OHC, IHC and pillar cell (PC) loss. HPßCD significantly reduced DPOAE and CAP amplitudes and caused significant OHC, IHC and OPC losses with losses greater in the high-frequency base of the cochlea than the apex. Neither minocycline + HK-2 (MIN+ HK-2) nor minocycline + NAC (MIN+NAC) prevented the loss of DPOAEs, CAPs, OHCs, IHCs or IPCs caused by HPßCD. These results suggest that oxidative stress and neuroinflammation are unlikely to play major roles in mediating the first or second phase of HPßCD-induced cochlear damage. Thus, HPßCD-induced ototoxicity must be mediated by some other unknown cell-death pathway possibly involving loss of trophic support from damaged support cells or disrupted cholesterol metabolism.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 / 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Doenças Neurodegenerativas / Ciclodextrinas / Perda Auditiva Limite: Animals Idioma: En Revista: Hear Res Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 / 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Doenças Neurodegenerativas / Ciclodextrinas / Perda Auditiva Limite: Animals Idioma: En Revista: Hear Res Ano de publicação: 2022 Tipo de documento: Article